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ABSTRACT

ON THE VANISHING OF SELF TOR

Tatheer Ajani, B.S. Mathematics

The University of Texas at Arlington, 2020

Faculty Mentor: David Jorgensen

The Tor functor plays a large role in homological algebra and its uses include defining generalized

algebraic structures such as the homology of groups and associative algebras. Many proven

properties of Tor involve two distinct R-modules A and B, but self Tor concerns a single module,

in other words, A = B. This work takes a look at the classical case of the vanishing of Tor when

A is the quotient of R by an ideal and uses the definitions and theorems we develop in order to

generalize the classical case. We begin definitions of chain complexes, homology and exactness,

projective modules and resolutions, syzygy, tensor products, and functors. We use that information

to construct and define the Tor functor, the key element to our classical case. The main result of

this work uses the isomorphism between self Tor on the (p− 1)th syzygy module and the 1st

homology module of a free resolution tensored with itself. Then using the minimal generator of

the pth syzygy module, we find a 1-cycle of the free resolution tensored with itself, showing that

self Tor of a finitely generated module is not 0, up to isomorphism. We conclude by demonstrating

that the classical case is merely a corollary of this theorem.
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CHAPTER 1

INTRODUCTION

The derived functor Tor and its applications play a major role in homological algebra and

ring theory. Used to define invariants of algebraic structures, such as homology of groups and

associative algebras, we immediately see the importance of this functor by simply taking a look at

its prominence in any homological algebra textbook. In this thesis, we investigate a long-standing

conjecture that for a commutative ring R and a non-zero R-module M, if TorR
i (M,M) 6= 0 for i > 0,

then M is projective.

Before we delve further into this problem, we begin with important terminology, theorems,

and results that are needed to understand properly the topic at hand, then we will move forward to

prove our claim.
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CHAPTER 2

BACKGROUND

We use this section to define any terms or concepts needed to understand later sections. An

experienced reader may skim over the concepts they find familiar. However, we also intend to use

this section to establish notation that will be used throughout the paper, so skipping this section

entirely is not recommended.

2.1 Chain Complexes

A chain complex C of R-modules is a family {Ci}i∈Z of R-modules together with R-module

homomorphisms {di : Ci → Ci−1}i∈Z such that the composite didi+1 = 0, where the maps di are

boundary operators. In other words, Im di+1 ⊆ ker di for all i ∈ Z. We can write out a chain

complex as

· · · //Ci+1
di+1 //Ci

di //Ci−1 // · · ·

We often call such a chain complex a sequence of homomorphisms. For our purposes, we look at

chain complexes such that Ci = 0 for all i < 0, i.e.,

· · · //Ci+1 //Ci // · · · //C1 //C0 // 0

Here, we have removed the names of the maps as they will be understood. The nth homology

module is the quotient group Hn(C) = ker dn / im dn+1, where we call the kernel of dn the module

of n-cycles of C and the image dn+1 the module of n-boundaries of C. This is sometimes referred

to as the homology at the nth position.

If Hn(C) = 0, meaning ker dn = im dn+1, we say that the sequence is exact at n. Similarly, if
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Hn(C) = 0 for all n ∈ N, we call this an exact sequence. By this, we mean the complex is exact or

has no homology.

2.2 Projective Resolutions

To begin the topic of projective resolutions, we must look at a special type of R-modules

namely, the projective modules. Many of these definitions can be easily found in Rotman [1]

and Weibel [2].

A projective module P is an R-module if for any R-modules, A and B, with homomorphisms

f : P→ B and g : A→ B, g a surjection, then there exists a map h : P→ A such that gh = f , that is,

the map h makes the following diagram commute, where the bottom line is exact:

P
h

���
�

�
�

f
��

A g
// B // 0

Now let C be a projective R-module. A projective resolution of M is an exact chain complex with

Ci projective for each i. Notice that for the sequence to be exact, the map d0 must be surjective.

· · · di+1 //Ci
di // · · · d2 //C1

d1 //C0
d0 // M // 0

We call the R-module im dn the nth syzygy module of M.

Recall that a commutative local ring is a commutative Noetherian ring with a unique maximal

ideal m. When R is a local ring, we say that the above projective resolution of M is minimal if im

dn ⊆mCn−1 for all n≥ 1. We note that when R is local, projective modules are necessarily free.

2.3 Tensor Products

In most cases, the reader has some familiarity with tensor products, either regarding vector

spaces or abelian groups. Here, we will give a general definition of tensor product for two
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R-modules. A tensor product can be viewed as a solution to a universal mapping problem. It

creates a unique map that makes many diagrams commute.

Let R be a ring, let AR be a right R-module, let RB be a left R-module, and let G be an (additive)

abelian group. A function f : A×B→ G is called R-biadditive if, for all a,a′ ∈ A,b,b′ ∈ B, and

r ∈ R, we have

f (a+a′,b) = f (a,b)+ f (a′,b),

f (a,b+b′) = f (a,b)+ f (a,b′),

f (ar,b) = f (a,rb).

If R is commutative and A, B, and M are R-modules, then f is called R-bilinear if f is R-biadditive

and

f (ar,b) = f (a,rb) = r f (a,b).

Given a ring R and modules AR and RB, then their tensor product is an abelian group A⊗R B

where an R-biadditive function h : A×B→ A⊗R B such that for every abelian group G and every

R-biadditive function f : A×B→G, there exists a unique homomorphism f ′ : A⊗R B→G making

the following diagram commute:

A×B h //

f
%%KKKKKKKKKKK A⊗R B

f ′yys s s s s s

G

However, this does not address the existence of the tensor product.

Theorem 2.1. If R is a ring, AR is a right R-module, and RB is a left R-module, then their tensor

product exists.

Proof. Let F be the free abelian group with basis A×B; that is, F is free on all ordered pairs (a,b),

where a∈ A and b∈ B. Define S to be the subgroup of F generated by all elements of the following
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three types:

(a,b+b′)− (a,b)− (a,b′),

(a+a′,b)− (a,b)− (a′,b),

(ar,b)− (a,rb).

Define A⊗R B = F/S, denote the coset (a,b) + S by a⊗ b, and define h : A×B→ A⊗R B by

h : (a,b) 7→ a⊗b. We have the following identities in A⊗R B:

a⊗ (b+b′) = a⊗b+a⊗b′,

(a+a′)⊗b = a⊗b+a′⊗b,

ar⊗b = a⊗ rb.

We can now see that h is R-biadditive. Consider the diagram:

A×B h //

f

��9999999999999999

i
%%KKKKKKKKKKK A⊗R B

f ′

���
�

�
�

�
�

�
�

F

nat
99sssssssssss

ϕ

���
�
�

G

where G is an abelian group, f is R-biadditive, and i : A×B→ F is the inclusion. Since F is free

abelian with basis A×B, there exists a homomorphism ϕ : F → G with ϕ(a,b) = f (a,b) for all

(a,b). Now S ⊆ kerϕ because f is R-biadditive, and so ϕ induces a map f ′ : A⊗R B = F/S→ G

by

f ′(a⊗b) = f ′((a,b)+S) = ϕ(a,b) = f (a,b).

This equation may be rewritten as f ′h = f ; that is, the diagram commutes.
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2.4 Tor

In this section, we introduce the derived functor Tor and its properties. To begin, we will give

a few definitions from category theory.

A category C is class of objects obj(C ), a class of sets of morphisms mor(A,B) for each

ordered pair of objects (A,B), and composition mor(A,B)×mor(B,C)→ mor(A,C) denoted by

( f ,g) 7→ g f for every triplet A,B,C of objects. We usually use f : A→ B instead of f ∈mor(A,B).

These have the following properties:

• each f : A→ B has a unique domain A and a unique target B,

• for each object A, there is an identity morphism 1A ∈ mor(A,A) such that f 1A = f and

1B f = f for all f : A→ B, and

• composition is associative, i.e., given the morphisms

A
f // B

g //C h // D ,

h(g f ) = (hg) f .

If C and D are categories, then a functor T: C →D is a function such that

• if A ∈ obj(C ), then T (A) ∈ obj(D),

• if f : A→ A′ in C , then T ( f ) : T (A)→ T (A′) in D , and

• if A
f // A′

g // A” in C , then T (A)
T ( f ) // T (A′)

T (g) // T (A”) in D and T (g f )=T (g)T ( f ).

In other words, functors are homomorphisms of categories. Building off our last definition, a

covariant functor F: C → D is precisely a functor. The difference in names is to distinguish

these functors from contravariant functors, which we will not discuss in this paper. With all these

definitions at hand, we begin to define Tor.
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Given an additive covariant functor T : A → C between abelian categories, where A has

enough projective resolutions, the functors LnT are called the left derived functors of T.

If B is a left R-module and T = �⊗R B, define TorR
n (�,B) = LnT . This means, for P =

// P2
d2 // P1

d1 // P0
ε // A // 0 the chosen projective resolution of a right R-module A,

then

TorR
n (A,B) = Hn(PA⊗R B) =

ker(dn⊗1B)

im(dn+1⊗1B)
.

If A is a right R-module and T = A⊗R �, define torR
n (A,�) = LnT . This means, for Q =

// Q2
d2 // Q1

d1 // Q0
ε // B // 0 the chosen projective resolution of a left R-module B,

then

torR
n (A,B) = Hn(A⊗R QB) =

ker(1A⊗dn)

im(1A⊗dn+1)
.

This brings us to a nice result that will help modify our notation.

Theorem 2.2. For all left R-modules A, all right R-modules B, and all n≥ 0,

TorR
n (A,B)∼= torR

n (A,B)

For the sake of brevity, we only reference the proof of this theorem. It is an immediate

consequence of Theorem 10.22 in Rotman [1], which states:

For deleted projective resolutions PA of A and PB of B, one has

Hn(PA⊗R B)∼= Hn(PA⊗R QB)∼= Hn(A⊗R QB).

Here, PA⊗R QB is the tensor product of complexes defined on Page 614 of Rotman’s book.
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CHAPTER 3

THE CLASSICAL CASE OF IDEALS

The goal of this paper is to generalize the following classical result on the vanishing of self Tor

for ideals.

Theorem 3.1. Let I be a non-zero ideal in a commutative local ring R. Then TorR
1 (R/I,R/I) 6= 0.

The usual proof of the theorem uses the classic isomorphism of Proposition 10.20 in Rotman

[1], which says for ideals I and J in a commutative ring,

TorR
1 (R/I,R/J)∼= (I∩ J)/IJ

Then when I = J and R is local, I ∩ J/IJ is just I/I2, which is zero iff I = 0, by Nakayama’s

Lemma.
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CHAPTER 4

THE MAIN RESULT

Continuing to the final section of this paper, we can use the previously established theorems

and definitions to prove our generalization.

Theorem 4.1. Let M be a finitely generated module over a local ring R. Suppose that for a minimal

free resolution F of M, the pth syzygy module has a minimal generator of the form xe1, where x∈ R

and e1 is the standard basis vector of Fp−1. Then TorR
2p−1(M,M) 6= 0.

Proof. We use the fact that

TorR
2p−1(M,M)∼= TorR

1 (im dp−1, im dp−1)∼= H1(F≥p−1⊗F≥p−1)

where F≥p−1 is the complex

· · · → Fi
di−→ Fi−1→ ·· · → Fp

dp−→ Fp−1→ 0

By hypothesis, there exists v ∈ Fp such that dp(v) = xe1. Consider the element

v⊗ e1 +(−1)pe1⊗ v ∈ Fp⊗R Fp−1⊕Fp−1⊗R Fp

We can see that Fp⊗R Fp−1⊕Fp−1⊗R Fp ⊆ (F⊗R F)2p−1.
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Now, we have

(dp⊗1Fp−1 +1Fp−1⊗dp)(v⊗ e1 +(−1)pe1⊗ v)

= dp(v)⊗ e1 +(−1)2p−1e1⊗dp(v)

= xe1⊗ e1− e1⊗ xe1

= xe1⊗ e1− xe1⊗ e1

= 0.

Since xe1 is a minimal generator of im dp, we have

v⊗ e1 ∈ Fp⊗R Fp−1 \m(Fp⊗R Fp−1),

and therefore have found a 1-cycle of F≥p−1⊗F≥p−1. This cannot be a 1-boundary, since F was

taken as minimal. Thus, we have

TorR
2p−1(M,M)∼= TorR

1 (im dp−1, im dp−1) 6= 0.

If we recall the classical theorem of Section 3, we see that Theorem 3.1 is a simple corollary

of the above theorem.

Proof. The first syzygy module of R/I is I, which certainly has minimal generators of the form

xe1. Actually, here e1 is just 1.
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