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ABSTRACT 

 

BLOWING BUBBLES (AND SEEING WHERE THEY GO): A STUDY  

OF PARTITION SPACES AND CONTINUOUS  

FUNCTIONS BETWEEN THEM 

 

Gabriel Cantanelli, B.S Mathematics  

 

The University of Texas at Arlington, 2022 

 

Faculty Mentor: Barbara Shipman  

The field of topology is concerned with the study of “topological spaces,” 

mathematical objects used to describe space and change at their most fundamental levels. 

Within this thesis, a study of a class of topological spaces, called partition spaces, is 

conducted. Four results concerning such spaces are presented, together with formal proofs 

and illustrative examples. The first result describes the behavior of limits of sequences in 

partition spaces. The second result characterizes continuous functions between such 

spaces. From the first and second results, a third finding is derived that relates continuous 

functions between partition spaces to limits of sequences in their domains. Lastly, the 

fourth result establishes necessary and sufficient conditions for a function between partition 

spaces to be a homeomorphism. These results are not found explicitly within the  



 v 

mathematical literature and are self-contained in their development. Together, they 

comprise a basic description of continuous functions between partition spaces. 
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CHAPTER 1 

A BRIEF INTRODUCTION TO TOPOLOGY 

1.1 A Pictorial Preview 

This thesis begins with a quick preview in pictures of the concepts that will follow. 

In order to construct the primary object of study within this work, a set 𝑋𝑋 is first partitioned 

into disjoint “bubbles”, called “prime open sets”. 

 

 

Figure 1.1: A Set 𝑋𝑋, Together With a Partition on It 
 
 

Then, the collection of all possible unions of these prime open sets is formed; these unions 

are called “open sets”, and the collection is called a “partition topology on 𝑋𝑋”.
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Figure 1.2: A Partition Topology on 𝑋𝑋 
 
 

The set 𝑋𝑋, together with the partition topology on it, is called a “partition space”; this is the 

primary object of interest.  

It will then be shown that the behavior of continuous functions between partition 

spaces is completely characterized by the “preservation” of prime open sets in the domain, 

 

 

Figure 1.3: A Continuous Function Between Partition Spaces, Which  
Keeps the Bubbles Intact! 
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and that the behavior of non-continuous functions between such spaces is characterized 

by the “breaking” of prime open sets in the domain. 

 

 

Figure 1.4: A Non-Continuous Function Between Partition Spaces, 
Which “Pops” the Bubbles! 

 
 

This result serves as the foundation for two of the other presented results and provides the 

basis for the main conclusion of this work, which is that the characteristics of a partition 

space are completely determined by its prime open sets. Some basic definitions that will 

be used throughout the paper will now be discussed in order to understand the mathematics 

behind these concepts.  

1.2 What is a Topological Space? 

The first definition to understand is that of a topological space (Morris, 2020), 

which is the primary object of study in the field of topology. 

1.2.1 Definition of a Topological Space 

Definition: Let 𝑋𝑋 be a set. Let 𝑇𝑇 be a collection of subsets of 𝑋𝑋. We call 𝑇𝑇 a 

“topology on 𝑋𝑋” if it satisfies the following four conditions: 

(a).  𝑋𝑋 ∈ 𝑇𝑇. 
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(b).  ∅ ∈ 𝑇𝑇. 

(c).  T is closed under arbitrary unions. 

(d).  T is closed under finite intersections.  

The elements of 𝑇𝑇 are referred to as “open sets”. 𝑋𝑋, together with 𝑇𝑇, are referred to as a 

single “topological space”, which is denoted by the pair (𝑋𝑋,𝑇𝑇). 

Here, an arbitrary union refers to a union of any number of sets, whether the number 

be finite or infinite. In the same way, a finite intersection refers to an intersection of a finite 

number of sets. In both contexts, the sizes of the individual sets themselves (i.e., the 

numbers of elements that they contain) do not matter. 

 

 

Figure 1.5: Examples of Basic Topological Spaces, in Which the 
“Bubbles” Represent the Open Sets 

 
 

As is often the case in mathematics, this seemingly simple definition gives rise to a 

vast field of study. Similar to how the field of linear algebra is largely founded upon the 

study of vector spaces and linear maps between them, or how much of abstract algebra 

builds upon the basic definition of a group, the subject of topology is based upon the study 

of topological spaces, together with other related concepts. Particularly, topology is 

concerned with the various characteristics that a topological space can have, and how those 

characteristics interact with different types of mappings between topological spaces 

(University of Waterloo, 2015). 
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One can imagine that many kinds of topological spaces exist, each having their own 

unique properties and characteristics. Indeed, a whole classification system for topological 

spaces exists simply based upon how points in their open sets are “separated” out from one 

another (the “separation axioms”) (Seebach & Steen, 1978). Even the “size” of a 

topological space can vary greatly – one can construct topological spaces using finite 

topologies on finite sets, finite topologies on infinite sets, or infinite topologies on infinite 

sets! 

1.2.2 Examples of Topological Spaces 

An example of a topological space (𝑋𝑋,𝑇𝑇) based upon a finite topology on a finite 

set is: 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} 

𝑇𝑇 = �∅, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑}, {𝑎𝑎, 𝑏𝑏}� 

It is quickly verified that 𝑇𝑇 satisfies all the criteria needed in order to be a topology on 𝑋𝑋. 

Immediately, it can be seen that ∅ ∈ 𝑇𝑇 and 𝑋𝑋 ∈ 𝑇𝑇. Verifying that 𝑇𝑇 is closed under all 

possible unions: 

∅ ∪ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∈ 𝑇𝑇 

∅ ∪ {𝑎𝑎, 𝑏𝑏} = {𝑎𝑎, 𝑏𝑏} ∈ 𝑇𝑇 

{𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∪ {𝑎𝑎, 𝑏𝑏} = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∈ 𝑇𝑇 

∅ ∪ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∪ {𝑎𝑎, 𝑏𝑏} = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∈ 𝑇𝑇 

It is also quickly verified that 𝑇𝑇 is closed under all finite intersections (which, as 𝑇𝑇 is finite, 

is just all possible intersections): 

∅ ∩ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} = ∅ ∈ 𝑇𝑇 

∅ ∩ {𝑎𝑎, 𝑏𝑏} = ∅ ∈ 𝑇𝑇 
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{𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∩ {𝑎𝑎, 𝑏𝑏} = {𝑎𝑎, 𝑏𝑏} ∈ 𝑇𝑇 

∅ ∩ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∩ {𝑎𝑎, 𝑏𝑏} = ∅ ∈ 𝑇𝑇 

So indeed, 𝑇𝑇 is a topology on 𝑋𝑋, in which case (𝑋𝑋,𝑇𝑇) is a genuine topological space.  

An example of a topological space (𝑌𝑌, 𝑆𝑆) comprised of a finite topology on an 

infinite set is the “single point topological space”, in which: 

𝑌𝑌 = ℝ 

𝑆𝑆 = �ℝ,∅, {𝑥𝑥}� 

Here, 𝑥𝑥 denotes a real number.  

An example of a topological space based upon an infinite topology on an infinite 

set is the topological space (ℝ,𝑇𝑇ℝ), where 𝑇𝑇ℝ is the “standard topology” on ℝ formed by 

taking the open sets to be the usual open sets in ℝ (Abbott, 2015). 

 

 

Figure 1.6: The Topological Space (ℝ,𝑇𝑇ℝ) 
 
 

Another such example is the “stalagmite topological space” (ℕ,𝑇𝑇ℕ) (Shipman & 

Stephenson, 2022), in which the topology 𝑇𝑇ℕ is given by: 

𝑇𝑇ℕ = �{1,2, … , 𝑘𝑘}: 𝑘𝑘 ∈ ℕ� ∪ {∅,ℕ} 

(ℕ,𝑇𝑇ℕ) can be visualized using the following figure: 
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Figure 1.7: The Stalagmite Topological Space (ℕ,𝑇𝑇ℕ) 
 
 

The open sets in 𝑇𝑇ℕ appear to creep upwards as they encompass more natural numbers, 

similar to how a stalagmite creeps upwards from a cave floor.  

1.3 Sequential Limits in Topological Spaces 

Next presented is the definition of what it means to be a limit of a sequence in the 

context of topology (Shipman & Stephenson, 2022). Throughout the remainder of this 

work, it will be assumed that any set defined without explicit specification of its elements 

is nonempty. 

1.3.1 Definition of a Limit of a Sequence 

Definition: Let (𝑋𝑋,𝑇𝑇) be a topological space. Let (𝑥𝑥𝑛𝑛) be a sequence in 𝑋𝑋. Let 𝐿𝐿 ∈

𝑋𝑋. To say that “𝐿𝐿 is a limit of  (𝑥𝑥𝑛𝑛)” means that all but finitely many terms of (𝑥𝑥𝑛𝑛) are 

contained in every open set in 𝑇𝑇 containing 𝐿𝐿. 

Some may observe that, in the context of real analysis, this definition is equivalent 

to the standard definition of a sequential limit (Abbott, 2015). There, the relevant 

topological space is (ℝ,𝑇𝑇ℝ). In that context, it is readily understood that a real number is a 

limit of a real-valued sequence precisely when the terms of the sequence get “arbitrarily 
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close” to the number in question. This notion translates to the more general context now 

assumed within this definition, as the open sets in an abstract topological space are what 

determine “closeness” to a particular element of the underlying set. Thus, even in this 

setting, determining if an element is limit of a sequence can be thought of as determining 

if the terms of the sequence get arbitrarily close to that element! 

1.3.2 Determining the Limits of Sequences  

Consider the following topological space (𝑋𝑋,𝑇𝑇): 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} 

𝑇𝑇 = �{𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐,𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑},∅� 

together with the following sequences in 𝑋𝑋: 

(𝑥𝑥𝑛𝑛) = (𝑎𝑎, 𝑎𝑎,𝑎𝑎, … ) 

(𝑦𝑦𝑛𝑛) = (𝑏𝑏, 𝑏𝑏, 𝑏𝑏, … ) 

(𝑧𝑧𝑛𝑛) = (𝑎𝑎, 𝑐𝑐,𝑎𝑎, 𝑐𝑐,𝑎𝑎, 𝑐𝑐, … ) 

In order to determine the limits of these sequences, the open sets in 𝑇𝑇 must be inspected. 

Beginning with (𝑥𝑥𝑛𝑛), it is immediately seen that a is a limit, as every open set 

containing a contains all terms of (𝑥𝑥𝑛𝑛). Upon further inspection, it is apparent that a is the 

only limit of (𝑥𝑥𝑛𝑛), as the open set {𝑏𝑏, 𝑐𝑐,𝑑𝑑} containing all other elements excludes a. 

Examining (𝑦𝑦𝑛𝑛), it is clear that 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are all limits, as 𝑏𝑏 is an element of 

every open set in 𝑇𝑇. That is, all terms of (𝑦𝑦𝑛𝑛) are contained in every open set in 𝑇𝑇, in which 

case every element of 𝑋𝑋 must be a limit of (𝑦𝑦𝑛𝑛). This gives way to the important 

observation that limits are not necessarily unique in the general context of topology. This 

stands in opposition to the behavior of limits in the more specific setting of real analysis, 

in which limits are in fact unique (Abbott, 2015).  
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Lastly, it is quickly seen that (𝑧𝑧𝑛𝑛) has no limits, as the open set {𝑎𝑎} excludes c and 

the open set {𝑏𝑏, 𝑐𝑐,𝑑𝑑} excludes a.  

1.4 Continuous Functions 

Now shown is the definition of a continuous function in the context of topology 

(Morris, 2020).  

1.4.1 Definition of a Continuous Function 

Definition: Let (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) be topological spaces. Let 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 be a function. 

To say that 𝑓𝑓 is a “continuous function” means that if 𝑂𝑂 ∈ 𝑆𝑆, then 𝑓𝑓−1[𝑂𝑂] ∈ 𝑇𝑇 (where 

𝑓𝑓−1[𝑂𝑂] denotes the preimage of 𝑂𝑂).  

Simply put, to say that a function is continuous means that the preimage of every 

open set in the codomain is an open set in the domain. Though seemingly abstract at first 

glance, in the context of analysis, this definition is actually equivalent to the standard 𝜀𝜀 −

𝛿𝛿 definition of continuity used (Abbott, 2015)! The intuition from that setting again carries 

over to the general setting of topology, in that if one wishes to get “close” to the image of 

a point under a continuous function, one simply needs to get “close” to the original point 

itself. 

1.4.2 An Example and a Nonexample of a Continuous Function 

Consider the topological space (𝑋𝑋,𝑇𝑇): 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} 

𝑇𝑇 = �{𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑},∅� 

together with another topological space (𝑌𝑌, 𝑆𝑆): 

𝑌𝑌 = {1,2,3,4} 

𝑆𝑆 = �{1}, {1,3}, {1,2,3,4},∅� 
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Define the function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 by: 

𝑓𝑓(𝑎𝑎) = 1; 𝑓𝑓(𝑏𝑏) = 3;𝑓𝑓(𝑐𝑐) = 𝑓𝑓(𝑑𝑑) = 2 

Examining the preimages of the open sets in 𝑆𝑆:  

𝑓𝑓−1[{1}] = {𝑎𝑎} ∈ 𝑇𝑇 

𝑓𝑓−1[{1,3}] = {𝑎𝑎, 𝑏𝑏} ∈ 𝑇𝑇 

𝑓𝑓−1[{1,2,3,4}] = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∈ 𝑇𝑇 

𝑓𝑓−1[∅] = ∅ ∈ 𝑇𝑇 

Thus, the preimage of every open set in 𝑆𝑆 is another open set in 𝑇𝑇. Hence, 𝑓𝑓 is a continuous 

function! 

Now, consider the following function 𝑔𝑔:𝑋𝑋 → 𝑌𝑌 defined as follows: 

𝑔𝑔(𝑎𝑎) = 4;𝑔𝑔(𝑏𝑏) = 2;𝑔𝑔(𝑐𝑐) = 1;𝑔𝑔(𝑑𝑑) = 3 

Examining the preimages of the open sets, it can be seen that 𝑓𝑓−1[{1}] = {𝑐𝑐} ∉ 𝑇𝑇. Thus, 𝑔𝑔 

is not a continuous function. 

1.5 Homeomorphisms 

Lastly presented in this chapter is the definition of what it means for two topological 

spaces to be indistinguishable (Morris, 2020). 

1.5.1 Definition of a Homeomorphism 

Definition: Let (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) be topological spaces. Let 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 be a function. To 

say that f is a “homeomorphism” between (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) means that:  

(a).  𝑓𝑓 is a bijection. 

(b).  𝑓𝑓 is continuous. 

(c).  𝑓𝑓−1 is continuous (where 𝑓𝑓−1 is the inverse of 𝑓𝑓). 

When such a function exists, (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) are said to be “homeomorphic”. 
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Thus, a homeomorphism is a bijection between two topological spaces that is 

continuous in both directions. Such a map communicates that two topological spaces are 

structurally identical; it communicates that the two spaces only differ in the names of their 

points, and that their open sets are essentially the same (Morris, 2020). In this case, we 

consider the spaces to be indistinguishable, as in topology the naming of points is of no 

importance. Some may note that the concept of a homeomorphism is similar to the concept 

of an isomorphism in algebra, in that an isomorphism demonstrates that two algebraic 

structures are identical and differ only in the names of their points (Fraleigh, 2002). 

1.5.2 Example of a Homeomorphism 

Consider the same topological space (𝑋𝑋,𝑇𝑇) from Section 1.3.2: 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} 

𝑇𝑇 = �{𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑},∅� 

Define another topological space (𝑌𝑌, 𝑆𝑆) by 

𝑌𝑌 = {1,2,3,4} 

𝑆𝑆 = �{1}, {2}, {1,2}, {1,2,3,4},∅� 

𝑋𝑋 and 𝑌𝑌 are both sets of four elements, which means that there exists a bijection between 

them. Moreover, up to the naming of the elements, the topologies 𝑇𝑇 and 𝑆𝑆 appear to be 

identical. Thus, it is reasonable to conclude that (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) are homeomorphic.  

To prove this, consider the function ℎ:𝑋𝑋 → 𝑌𝑌 defined as follows: 

ℎ(𝑎𝑎) = 1;ℎ(𝑏𝑏) = 2;ℎ(𝑐𝑐) = 3;ℎ(𝑑𝑑) = 4 

It is immediately seen that ℎ is a bijection, and that ℎ−1 is given by: 

(ℎ−1)(1) = 𝑎𝑎; (ℎ−1)(2) = 𝑏𝑏; (ℎ−1)(3) = 𝑐𝑐; (ℎ−1)(4) = 𝑑𝑑 

 Moreover, it is not difficult to show that ℎ is continuous: 
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ℎ−1[{1}] = {𝑎𝑎} ∈ 𝑇𝑇 

ℎ−1[{2}] = {𝑏𝑏} ∈ 𝑇𝑇 

ℎ−1[{1,2}] = {𝑎𝑎, 𝑏𝑏} ∈ 𝑇𝑇 

ℎ−1[{1,2,3,4}] = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ∈ 𝑇𝑇 

ℎ−1[∅] = ∅ ∈ 𝑇𝑇 

And that ℎ−1 is continuous:  

(ℎ−1)−1[{𝑎𝑎}] = {1} ∈ 𝑇𝑇 

(ℎ−1)−1[{𝑏𝑏}] = {2} ∈ 𝑇𝑇 

(ℎ−1)−1[{𝑎𝑎, 𝑏𝑏}] = {1,2} ∈ 𝑇𝑇 

(ℎ−1)−1[{𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑}] = {1,2,3,4} ∈ 𝑇𝑇 

(ℎ−1)−1[∅] = ∅ ∈ 𝑇𝑇 

Thus, ℎ is indeed a homeomorphism between (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆). Therefore, the two spaces 

are homeomorphic.  

 

 

Figure 1.8: An Illustration of the Homeomorphism ℎ 
 
 

The above figure further highlights that the two spaces are identical in their topological 

structure.
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CHAPTER 2 

PARTITION SPACES 

2.1 Partitions of Sets 

Before proceeding, it is beneficial to define a partition of a set in the context in 

which it will be used for the purpose of this study (Halmos, 1987).  

2.1.1 Definition of a Partition of a Set 

Definition: Let 𝑋𝑋 be a set. A “partition of 𝑋𝑋” is a disjoint collection of non-empty 

subsets of 𝑋𝑋, such that the union of all sets in the collection equals 𝑋𝑋.  

By a disjoint collection of subsets, it is meant that for any two subsets 𝐴𝐴 and 𝐵𝐵 in 

the collection, 𝐴𝐴 ∩ 𝐵𝐵 = ∅. Indeed, a partition of a set is what one might expect it to be: a 

complete decomposition of a set into disjoint pieces. Note that any nonempty set may be 

partitioned, whether finite or infinite. 

2.1.2 Examples and Nonexamples of Partitions of Sets 

Let 𝑋𝑋 be the following set of symbols: 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 1,2,3, 𝛾𝛾, 𝛿𝛿} 

and let 𝑃𝑃 be the following collection of subsets of 𝑋𝑋: 

𝑃𝑃 = �{𝑎𝑎, 𝑏𝑏}, {1,2,3}, {𝛾𝛾, 𝛿𝛿}� 

It can be seen that 𝑃𝑃 is in fact a disjoint collection of subsets of 𝑋𝑋, as no two sets in 𝑃𝑃 have 

an element in common. Moreover, the union of all sets in 𝑃𝑃 does in fact equal the original 

set 𝑋𝑋. Then, 𝑃𝑃 is in fact a partition of 𝑋𝑋.
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Figure 2.1: An Illustration of the Partition 𝑃𝑃 
 
 

Now, let 𝑄𝑄 be the following collection of subsets of 𝑋𝑋: 

𝑄𝑄 = �{𝑎𝑎, 1,3, 𝛾𝛾}, {𝑏𝑏, 𝛿𝛿}� 

𝑄𝑄 is indeed a disjoint collection of subsets of 𝑋𝑋. However, it is not true that the union of 

all sets in 𝑄𝑄 equals the original set 𝑋𝑋, as no set in 𝑄𝑄 contains 2 as an element. Then, 𝑄𝑄 is 

not a partition of 𝑋𝑋. 𝑄𝑄 can be thought of as an incomplete decomposition of 𝑋𝑋.  

Consider another collection of subsets of 𝑋𝑋, given by 

𝑅𝑅 = �{𝑏𝑏, 1, 𝛾𝛾}, {2,3}, {𝑎𝑎, 𝑏𝑏, 𝛾𝛾, 𝛿𝛿}� 

Though the union of all sets in 𝑅𝑅 equals 𝑋𝑋, it can be seen that 𝑅𝑅 is not a disjoint collection 

of subsets of 𝑋𝑋, as the first and the third sets in 𝑅𝑅 have the elements 𝑏𝑏 and 𝛾𝛾 in common. 

As such, 𝑅𝑅 is not a partition of 𝑋𝑋.  

Examples of partitions of infinite sets include the even-odd decomposition of ℕ, 

given by 

�{2,4,6,8, … }, {1,3,5,7, … }� 

and the concentric circle partition of the complex plane ℂ, given by 

∪𝑟𝑟∈ℝ≥0 �{𝑧𝑧 ∈ ℂ ∶  |𝑧𝑧| = 𝑟𝑟}� 

where ℝ≥0 denotes the set of all non-negative real numbers. 
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2.2 Partition Spaces 

The definition of the primary object of study within this work is now introduced 

(Seebach & Steen, 1978).  

2.2.1 Definition of a Partition Space 

Definition: Let 𝑋𝑋 be a set. Let 𝑃𝑃 be a partition of 𝑋𝑋.  Let 𝑇𝑇𝑃𝑃 be the collection of all 

possible unions of sets in 𝑃𝑃. 𝑇𝑇𝑃𝑃 is the “partition topology on 𝑋𝑋 generated by 𝑃𝑃”. We call 

the topological space (𝑋𝑋,𝑇𝑇𝑃𝑃) a “partition space”.  

Therefore, to create a partition space using a set, one simply needs to create a 

partition topology on the set as described in the above definition. As a set can be partitioned 

in many ways, one set can give rise to many different partition topologies, and thus many 

different partition spaces. Note that any partition topology includes all the original sets in 

the partition.  

It can be quickly verified that for any partition 𝑃𝑃 on a set 𝑋𝑋, the partition topology 

𝑇𝑇𝑃𝑃 generated by 𝑃𝑃 satisfies the first three properties needed to be a topology on 𝑋𝑋. The 

whole set 𝑋𝑋 is an element of 𝑇𝑇𝑃𝑃, as the union of all sets in 𝑃𝑃 equals 𝑋𝑋 by the definition of 

a partition. The empty set, ∅, is an element of 𝑇𝑇𝑃𝑃, as ∅ is produced by the “empty union” 

of sets in 𝑃𝑃. 𝑇𝑇𝑃𝑃 is closed under all possible unions, as any union of sets in 𝑇𝑇𝑃𝑃 is, by 

construction, a union of sets in 𝑃𝑃, which is, by definition, an open set in 𝑇𝑇𝑃𝑃. It can also be 

verified that 𝑇𝑇𝑃𝑃 is closed under all finite intersections, as one will find that any finite 

intersection of sets in 𝑇𝑇𝑃𝑃 is either ∅ or a set in 𝑃𝑃.  

As a final point of new terminology, the sets in a partition used to create a partition 

topology will be referred to as “prime open sets” (Phillips et al., 2022). The terminology 

“prime” is used in reference to the fact that the prime open sets serve as the building blocks 
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for all other open sets in a partition topology, much like how prime numbers are viewed as 

the building blocks for the natural numbers. Also reminiscent of prime numbers, the 

terminology highlights the fact that the prime open sets are, in some sense, irreducible. For 

if 𝑆𝑆 is a prime open set and 𝑅𝑅 is an open set satisfying 𝑅𝑅 ⊆ 𝑆𝑆, it must be that 𝑅𝑅 = 𝑆𝑆. As can 

be seen, prime open sets cannot be broken down further into other open sets; they can be 

thought of as the most fundamental kind of open set in a partition topology. From the 

perspective of an element of the set used to create a partition topology, an element’s prime 

open set is the most fundamental open set containing it, in that its prime open set is always 

a subset of any other open set that contains it. 

2.2.2 Constructing Partition Spaces 

Let 𝑋𝑋 and 𝑃𝑃 be defined as in Section 2.1.2: 

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 1,2,3, 𝛾𝛾, 𝛿𝛿} 

𝑃𝑃 = �{𝑎𝑎, 𝑏𝑏}, {1,2,3}, {𝛾𝛾, 𝛿𝛿}� 

In order to create a partition topology 𝑇𝑇𝑃𝑃 on 𝑋𝑋 using 𝑃𝑃, one simply needs to collect all 

possible unions of sets in 𝑃𝑃: 

𝑇𝑇𝑃𝑃 = �{𝑎𝑎, 𝑏𝑏}, {1,2,3}, {𝛾𝛾, 𝛿𝛿}, {𝑎𝑎, 𝑏𝑏, 1,2,3}, {𝑎𝑎, 𝑏𝑏, 𝛾𝛾, 𝛿𝛿}, {1,2,3, 𝛾𝛾, 𝛿𝛿}, {𝑎𝑎, 𝑏𝑏, 1,2,3, 𝛾𝛾, 𝛿𝛿},∅� 

The pair (𝑋𝑋,𝑇𝑇𝑃𝑃) is thus an example of a partition space. This process of “decomposing” 𝑋𝑋 

into disjoint subsets and subsequently combining them together can be visualized using the 

following diagram: 
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Figure 2.2: An Illustration of the Partition Topology 𝑇𝑇𝑃𝑃 
 
 

Partition spaces involving infinite sets can be created in the same manner. For 

example, a partition space on ℂ can be constructed using the concentric circle partition on 

ℂ as described in Section 2.1.2. In that partition space, the prime open sets are the individual 

circles, and the open sets are all the possible collections of those circles. 

2.3 Sequential Limits in Partition Spaces 

The first result of this thesis is now introduced; it describes the behavior of limits 

of sequences in partition spaces. It will be demonstrated that limits of sequences in such 

spaces, when they exist, are bound together by prime open sets. 

2.3.1 Theorem on Sequential Limits in Partition Spaces 

Theorem: Let (𝑋𝑋,𝑇𝑇) be a partition space on a nonempty set 𝑋𝑋, let (𝑥𝑥𝑛𝑛) be a sequence 

in 𝑋𝑋, and let 𝐿𝐿 be a point in 𝑋𝑋. Let 𝑃𝑃𝐿𝐿 ∈ 𝑋𝑋 be the prime open set containing 𝐿𝐿. Then, 

(a).  The intersection of all open sets containing 𝐿𝐿 equals 𝑃𝑃𝐿𝐿. 

(b).  𝐿𝐿 is a limit of (𝑥𝑥𝑛𝑛) if and only if 𝑃𝑃𝐿𝐿 is the set of limits of (𝑥𝑥𝑛𝑛). 
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Proof: a). Let 𝐼𝐼 denote the index set of the collection of all open sets in 𝑇𝑇 that 

contain 𝐿𝐿. It must be shown that ∩𝑖𝑖∈𝐼𝐼 𝐿𝐿𝑖𝑖 = 𝑃𝑃𝐿𝐿.  

Let 𝐿𝐿𝑗𝑗, 𝑗𝑗 ∈ 𝐼𝐼 be a particular open set in this collection. By the definition of a partition 

topology, 𝐿𝐿𝑗𝑗 is a disjoint union of prime open sets in 𝑇𝑇. Let 𝐼𝐼𝐿𝐿𝑗𝑗 denote the index set for this 

union, and for 𝑘𝑘 ∈ 𝐼𝐼𝐿𝐿𝑗𝑗, let 𝐿𝐿′𝑘𝑘 denote a prime open set in this union indexed by 𝑘𝑘. Then, 

𝐿𝐿𝑗𝑗 = ∪𝑘𝑘∈𝐼𝐼𝐿𝐿𝑗𝑗 (𝐿𝐿′𝑘𝑘).  

Since this is a disjoint union of prime open sets, only one prime open set in the 

union contains 𝐿𝐿 – this set is precisely 𝑃𝑃𝐿𝐿. Therefore,  

𝐿𝐿𝑗𝑗 = ∪𝑘𝑘∈𝐼𝐼𝐿𝐿𝑗𝑗 (𝐿𝐿′𝑘𝑘) = �∪  𝑘𝑘∈𝐼𝐼𝐿𝐿𝑗𝑗
𝐿𝐿′𝑘𝑘≠𝑃𝑃𝐿𝐿

(𝐿𝐿′𝑘𝑘)� ∪ 𝑃𝑃𝐿𝐿 = 𝑅𝑅𝑗𝑗 ∪ 𝑃𝑃𝐿𝐿 

where 𝑅𝑅𝑗𝑗 = ∪  𝑘𝑘∈𝐼𝐼𝐿𝐿𝑗𝑗
𝐿𝐿′𝑘𝑘≠𝑃𝑃𝐿𝐿

(𝐿𝐿′𝑘𝑘). Note that 𝑅𝑅𝑗𝑗 ∩ 𝑃𝑃𝐿𝐿 = ∅ for all 𝑗𝑗 ∈ 𝐼𝐼.  Using this,  

∩𝑖𝑖∈𝐼𝐼 𝐿𝐿𝑖𝑖 = ∩𝑖𝑖∈𝐼𝐼 (𝑅𝑅𝑖𝑖 ∪ 𝑃𝑃𝐿𝐿) = (∩𝑖𝑖∈𝐼𝐼 𝑅𝑅𝑖𝑖) ∪ 𝑃𝑃𝐿𝐿 

Since 𝑃𝑃𝐿𝐿 is itself an open set containing 𝐿𝐿, there exists an 𝛼𝛼 ∈ 𝐼𝐼 such that 𝑃𝑃𝐿𝐿 = 𝐿𝐿𝛼𝛼.  

Then, from before, 𝐿𝐿𝛼𝛼 = 𝑅𝑅𝛼𝛼 ∪ 𝑃𝑃𝐿𝐿. So 𝑃𝑃𝐿𝐿 = 𝐿𝐿𝛼𝛼 = 𝑅𝑅𝛼𝛼 ∪ 𝑃𝑃𝐿𝐿. Since 𝑅𝑅𝛼𝛼 ∩ 𝑃𝑃𝐿𝐿 = ∅, this implies 

that 𝑅𝑅𝛼𝛼 = 0. Thus,  

∩𝑖𝑖∈𝐼𝐼 𝐿𝐿𝑖𝑖 = (∩𝑖𝑖∈𝐼𝐼 𝑅𝑅𝑖𝑖) ∪ 𝑃𝑃𝐿𝐿 = ��∩ 𝑖𝑖∈𝐼𝐼
𝑅𝑅𝑖𝑖≠𝑅𝑅𝛼𝛼

𝑅𝑅𝑖𝑖� ∩ 𝑅𝑅𝛼𝛼� ∪ 𝑃𝑃𝐿𝐿 = ��∩ 𝑖𝑖∈𝐼𝐼
𝑅𝑅𝑖𝑖≠𝑅𝑅𝛼𝛼

𝑅𝑅𝑖𝑖� ∩ ∅� ∪ 𝑃𝑃𝐿𝐿 

= (∅) ∪ 𝑃𝑃𝐿𝐿 = 𝑃𝑃𝐿𝐿 

Thus, ∩𝑖𝑖∈𝐼𝐼 𝐿𝐿𝑖𝑖 = 𝑃𝑃𝐿𝐿, so that the intersection of all open sets containing 𝐿𝐿 equals 𝑃𝑃𝐿𝐿.  

b). 
 
⇒) Suppose that 𝐿𝐿 is a limit of (𝑥𝑥𝑛𝑛). Every open set containing 𝐿𝐿 contains all 

but finitely many terms of (𝑥𝑥𝑛𝑛).  Then, all but finitely many terms are contained within 𝑃𝑃𝐿𝐿. 
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Suppose 𝑆𝑆 ∈ 𝑃𝑃𝐿𝐿, and let 𝑃𝑃𝑆𝑆 ∈ 𝑇𝑇 denote the prime open set that contains 𝑆𝑆. As any 

two prime open sets are either disjoint or equal, this implies that 𝑃𝑃𝑆𝑆 = 𝑃𝑃𝐿𝐿. Then, all but 

finitely many terms of (𝑥𝑥𝑛𝑛) are contained within 𝑃𝑃𝑆𝑆. So, by part a), every open set 

containing 𝑆𝑆 contains all but finitely many terms of (𝑥𝑥𝑛𝑛). Therefore, 𝑆𝑆 is also a limit of 

(𝑥𝑥𝑛𝑛). 

Conversely, suppose that 𝑆𝑆 ∉ 𝑃𝑃𝐿𝐿. Then, 𝑃𝑃𝑆𝑆 ∩ 𝑃𝑃𝐿𝐿 = ∅. Since all but finitely many 

terms of (𝑥𝑥𝑛𝑛) are contained within 𝑃𝑃𝐿𝐿, this implies that infinitely many terms of (𝑥𝑥𝑛𝑛) are 

outside of 𝑃𝑃𝑆𝑆. Since 𝑃𝑃𝑆𝑆 is an open set containing 𝑆𝑆, this implies that 𝑆𝑆 is not a limit of (𝑥𝑥𝑛𝑛). 

Thus, 𝑆𝑆 ∈ 𝑋𝑋 is a limit of (𝑥𝑥𝑛𝑛) if and only if 𝑆𝑆 ∈ 𝑃𝑃𝐿𝐿. So 𝑃𝑃𝐿𝐿 is the set of limits of (𝑥𝑥𝑛𝑛).   
 
⇐) Suppose that 𝑃𝑃𝐿𝐿 is the set of limits of (𝑥𝑥𝑛𝑛). It immediately follows that 𝐿𝐿 is a 

limit of (𝑥𝑥𝑛𝑛).          ∎ 

Therefore, part (b) of the theorem implies that sequences in partition spaces will 

either have a single prime open set as its set of limits, or absolutely no limits at all. Indeed, 

the limits of sequences in partition spaces are necessarily grouped together by the prime 

open sets. As such, to search for the limits of a particular sequence, one need only check if 

a single element from each prime open set is a limit of the sequence. If one does find that 

an element in a prime open set is a limit, then (b) dictates that the entire prime open set is 

exactly the set of limits of the sequence. Additionally, if one finds that an element in a 

prime open set is not a limit, then (b) guarantees that none of the elements in the set are 

limits. 

Furthermore, part (a) of the theorem shows that for any element 𝑝𝑝 of a set 𝑋𝑋, in a 

corresponding partition space (𝑋𝑋,𝑇𝑇), the intersection of all open sets containing 𝑝𝑝 is exactly 

the prime open set containing 𝑝𝑝. Therefore, to determine if 𝑝𝑝 is a limit of a sequence (𝑥𝑥𝑛𝑛) 
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in 𝑋𝑋, one need only check if all but finitely many terms of (𝑥𝑥𝑛𝑛) are contained within the 

prime open set containing 𝑝𝑝. Thus, the problem of finding the limits of sequences in 

partition spaces reduces to simply examining prime open sets.  

2.3.2 Determining the Limits of Sequences Using Theorem 2.3.1 

Consider the following set 𝑋𝑋 consisting of 6 points:  

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓} 

and consider the following partition topology on 𝑋𝑋:  

𝑇𝑇 = �{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑎𝑎, 𝑏𝑏,𝑓𝑓}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓},∅� 

together with the following sequences in 𝑋𝑋: 

(𝑥𝑥𝑛𝑛) = (𝑎𝑎, 𝑎𝑎,𝑎𝑎,𝑎𝑎, 𝑎𝑎,𝑎𝑎, … ) 

(𝑦𝑦𝑛𝑛) = (𝑓𝑓, 𝑒𝑒,𝑓𝑓,𝑓𝑓,𝑎𝑎, 𝑐𝑐,𝑑𝑑,𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, … ) 

(𝑧𝑧𝑛𝑛) = (𝑎𝑎, 𝑏𝑏,𝑓𝑓,𝑎𝑎, 𝑏𝑏,𝑓𝑓, 𝑎𝑎, 𝑏𝑏,𝑓𝑓,𝑎𝑎, 𝑏𝑏,𝑓𝑓, … ) 

Theorem 2.3.1 may be applied to determine whether these sequences have limits, and to 

quickly find those limits when they exist.  

To begin, it is easily seen that 𝑎𝑎 is a limit of (𝑥𝑥𝑛𝑛). Then, Theorem 2.3.1 dictates 

that the prime open set containing 𝑎𝑎 is exactly the set of limits of (𝑥𝑥𝑛𝑛). Thus, 𝑏𝑏 is also a 

limit of (𝑥𝑥𝑛𝑛), as it is also an element of the prime open set containing 𝑎𝑎. It can then be 

immediately concluded that neither 𝑐𝑐, 𝑑𝑑, e, nor 𝑓𝑓 are limits of (𝑥𝑥𝑛𝑛), as they are not elements 

of the prime open set containing 𝑎𝑎. 

Examining (𝑦𝑦𝑛𝑛), it is clear that 𝑎𝑎 is not a limit by Theorem 2.3.1, as there are 

infinitely many terms of value 𝑐𝑐 outside of the prime open set containing 𝑎𝑎. Then, 𝑏𝑏 is also 

not a limit of (𝑦𝑦𝑛𝑛), as 𝑏𝑏 is an element of that prime open set. However, 𝑐𝑐 is a limit of (𝑦𝑦𝑛𝑛), 

as all but finitely many terms of (𝑦𝑦𝑛𝑛) are contained within the prime open set containing 𝑐𝑐. 
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Thus, 𝑑𝑑 and 𝑒𝑒 are also limits of (𝑦𝑦𝑛𝑛), as they are both elements of that prime open set. It 

can then be immediately concluded that the remaining element 𝑓𝑓 is not a limit of (𝑦𝑦𝑛𝑛).   

Considering (𝑧𝑧𝑛𝑛), it can be seen that 𝑎𝑎 is not a limit, as there are infinitely many 

terms of value 𝑓𝑓 outside of the prime open set containing 𝑎𝑎. Then, 𝑏𝑏 is also not a limit of 

(𝑧𝑧𝑛𝑛). Additionally, neither 𝑐𝑐 nor 𝑓𝑓 are limits of (𝑧𝑧𝑛𝑛), as there are infinitely many terms of 

value 𝑎𝑎 outside of the prime open sets containing 𝑐𝑐 and 𝑓𝑓, respectively. It can then be 

immediately concluded that 𝑑𝑑 and 𝑒𝑒 are also not limits of (𝑧𝑧𝑛𝑛). Thus, (𝑧𝑧𝑛𝑛) does not have a 

limit.
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CHAPTER 3 

MAPPINGS BETWEEN PARTITION SPACES 

3.1 Continuous Functions Between Partition Spaces 

The theorem now presented serves as the foundation for the rest of the results 

contained within this work. It completely characterizes continuous functions between 

partition spaces and highlights the importance of prime open sets in determining the 

properties of a partition space. To see why, suppose that 𝑋𝑋 and 𝑌𝑌 are any two nonempty 

sets and that (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) are partition spaces on them. It will be shown that, to 

determine if a function between 𝑋𝑋 and 𝑌𝑌 is continuous, one need not consider the preimage 

of every single open set in 𝑆𝑆. All that needs be considered is where the prime open sets in 

𝑇𝑇 go.  

3.1.1 The Bubble Theorem  

The Bubble Theorem: Let (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) be partition spaces. 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is a 

continuous function if and only if, for every prime open set 𝑃𝑃 ∈ 𝑇𝑇, there exists a unique 

prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄. 

Proof: 
 
⇐) Suppose that, if 𝑃𝑃 ∈ 𝑇𝑇 is a prime open set, then there exists a prime open 

set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄. Let 𝑂𝑂 be an open set in 𝑆𝑆. Since 𝑆𝑆 is a partition topology, 𝑂𝑂 

is equal to a union ∪ 𝑄𝑄𝛼𝛼 of prime open sets, where 𝑄𝑄𝛼𝛼 ∈ 𝑆𝑆 ∀𝛼𝛼. Then, 

𝑓𝑓−1[𝑂𝑂] = 𝑓𝑓−1[∪ 𝑄𝑄𝛼𝛼] =∪ 𝑓𝑓−1[𝑄𝑄𝛼𝛼]
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Suppose that for all such 𝑄𝑄𝛼𝛼, 𝑓𝑓−1[𝑄𝑄𝛼𝛼] = ∅. Then,  

𝑓𝑓−1[𝑂𝑂] =∪ 𝑓𝑓−1[𝑄𝑄𝛼𝛼] =∪ ∅ = ∅ ∈ 𝑇𝑇 

in which case 𝑓𝑓−1[𝑂𝑂] is open in 𝑇𝑇. 

Now, suppose that there exists a 𝑄𝑄𝛼𝛼 such that 𝑓𝑓−1[𝑄𝑄𝛼𝛼] ≠ ∅. Let 𝑥𝑥 ∈ 𝑓𝑓−1[𝑄𝑄𝛼𝛼]. 

Since 𝑇𝑇 is a partition topology, there exists a prime open set 𝑃𝑃𝑥𝑥 ∈ 𝑇𝑇 such that 𝑥𝑥 ∈ 𝑃𝑃𝑥𝑥. By 

hypothesis, there exists a prime open set 𝑄𝑄𝑥𝑥 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃𝑥𝑥] ⊆ 𝑄𝑄𝑥𝑥. Since 𝑓𝑓(𝑥𝑥) ∈ 𝑄𝑄𝛼𝛼 

and 𝑓𝑓(𝑥𝑥) ∈ 𝑄𝑄𝑥𝑥, and since 𝑄𝑄𝛼𝛼 and 𝑄𝑄𝑥𝑥 are both prime open sets in 𝑆𝑆, it must be the case that 

𝑄𝑄𝛼𝛼 = 𝑄𝑄𝑥𝑥. Then, 𝑓𝑓[𝑃𝑃𝑥𝑥] ⊆ 𝑄𝑄𝛼𝛼. Thus, 𝑃𝑃𝑥𝑥 ⊆ 𝑓𝑓−1[𝑄𝑄𝛼𝛼]. 

Then, for any 𝑥𝑥 ∈ 𝑓𝑓−1[𝑄𝑄𝛼𝛼], the prime open set 𝑃𝑃𝑥𝑥 containing 𝑥𝑥 is such that  

 𝑃𝑃𝑥𝑥 ⊆ 𝑓𝑓−1[𝑄𝑄𝛼𝛼]. This in turn implies that, for any 𝑦𝑦 ∉ 𝑓𝑓−1[𝑄𝑄𝛼𝛼], the prime open set 𝑃𝑃𝑦𝑦 

containing 𝑦𝑦 is such that 𝑃𝑃𝑦𝑦 ∩ 𝑓𝑓−1[𝑄𝑄𝛼𝛼] = ∅ - if this intersection were non-empty, then the 

entire set 𝑃𝑃𝑦𝑦 containing 𝑦𝑦 would be a subset of 𝑓𝑓−1[𝑄𝑄𝛼𝛼]. Together, these imply that 

𝑓𝑓−1[𝑄𝑄𝛼𝛼] is exactly a union ∪ 𝑃𝑃 of prime open sets 𝑃𝑃 ∈ 𝑇𝑇. Then,  

𝑓𝑓−1[𝑂𝑂] =∪ 𝑓𝑓−1[𝑄𝑄𝛼𝛼] =∪ (∪ 𝑃𝑃) 

which is a union of prime open sets in 𝑇𝑇. Thus, 𝑓𝑓−1[𝑂𝑂] is an open set in 𝑇𝑇. Thus, 𝑓𝑓 is 

continuous. 
 
⇒) Suppose that 𝑓𝑓 is continuous. Let 𝑄𝑄 ∈ 𝑆𝑆 be a prime open set. Since 𝑓𝑓 is 

continuous, 𝑓𝑓−1[𝑄𝑄] is an open set in 𝑇𝑇. Since 𝑇𝑇 is a partition topology, 𝑓𝑓−1[𝑄𝑄]  =∪ 𝑃𝑃, 

where each 𝑃𝑃 is a prime open set in 𝑇𝑇. Then, for each 𝑃𝑃, 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄. 

If we repeat this argument for every prime open set 𝑄𝑄 ∈ 𝑆𝑆, we include all possible 

prime open sets in 𝑇𝑇, as the union of all such 𝑄𝑄 equals the whole codomain 𝑆𝑆. Then, for 

every prime open set 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄. 
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For uniqueness, suppose that there exist prime open sets 𝑃𝑃 ∈ 𝑇𝑇 and 𝑄𝑄,𝑄𝑄′ ∈ 𝑆𝑆 

satisfying 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄 and 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄′. Let 𝑥𝑥 ∈ 𝑃𝑃. Since 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄, 𝑓𝑓(𝑥𝑥) ∈ 𝑄𝑄. Since 𝑓𝑓[𝑃𝑃] ⊆

𝑄𝑄′, 𝑓𝑓(𝑥𝑥) ∈ 𝑄𝑄′. Since 𝑄𝑄 and 𝑄𝑄′ are prime open sets, this implies that 𝑄𝑄 = 𝑄𝑄′.  Thus, 𝑄𝑄 is 

unique in this manner.         ∎ 

Therefore, there is a special relationship between continuous functions and partition 

spaces: if one wishes to define a continuous function between such spaces, all one must do 

is map the points in each prime open set of the domain into exactly one prime open set of 

the codomain. It is as if the individual points in the prime open sets do not matter! 

Veritably, all that matters is that the prime open sets in the domain are kept intact. Thus, 

continuous functions treat prime open sets in the domain like bubbles, sending them over 

or shrinking them down into other prime open sets in the codomain. Intuitively, this seems 

like a “continuous” action: such functions bend and stretch prime open sets without ever 

breaking them. 

3.1.2 Constructing a Continuous Function Using the Bubble Theorem 

The Bubble Theorem may be applied to directly construct a continuous function 

between partition spaces. Let 𝑋𝑋 again be a set of six points:  

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓} 

with the same partition topology 𝑇𝑇 as in Section 2.3.1:  

𝑇𝑇 = �{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑎𝑎, 𝑏𝑏,𝑓𝑓}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓},∅� 

Let 𝑌𝑌 be the following set of eight points:  

𝑌𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} 

together with the partition topology 𝑆𝑆: 

𝑆𝑆 = �{1,3,6,7,8}, {2,5}, {4}, {1,2,3,5,6,7,8}, {1,3,4,6,7,8}, {2,4,5}, {1,2,3,4,5,6,7,8},∅� 



 

 25 

In order to define a continuous function 𝑔𝑔 between 𝑋𝑋 and 𝑌𝑌, one need only map the 

elements of each prime open set in 𝑇𝑇 into exactly one prime open set in 𝑆𝑆. One such choice 

of mapping for the prime open sets in 𝑇𝑇 is: 

{𝑎𝑎, 𝑏𝑏}
𝑔𝑔
→ {4} 

{𝑐𝑐,𝑑𝑑, 𝑒𝑒}
𝑔𝑔
→ {2,5} 

{𝑓𝑓}
𝑔𝑔
→ {1,3,6,7,8} 

 So, for example, for the function 𝑔𝑔:𝑋𝑋 → 𝑌𝑌 defined as follows: 

𝑔𝑔(𝑎𝑎) = 𝑔𝑔(𝑏𝑏) = 4;  𝑔𝑔(𝑐𝑐) = 2;  𝑔𝑔(𝑑𝑑) = 5;  𝑔𝑔(𝑒𝑒) = 2;  𝑔𝑔(𝑓𝑓) = 8 

the Bubble Theorem guarantees that 𝑔𝑔 is continuous! This mapping can be visualized 

through the following figure:  

 

Figure 3.1: An Illustration of the Continuous Function 𝑔𝑔 
 
 

Each partition space is represented in the diagram by superimposing their prime 

open sets on top of the underlying set. Indeed, the prime open sets look like bubbles in their 

partition spaces. 𝑔𝑔 bends and stretches each bubble in the domain into another bubble in 

the codomain. 
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3.1.3 Showing That a Function is Not Continuous Using the Bubble Theorem 

In addition to being a useful tool in showing that a function between partition spaces 

is continuous, the Bubble Theorem makes it easy to show that a function between such 

spaces is not continuous. To show that a function between such spaces is not continuous, 

all that one must demonstrate is that the points of a particular prime open set in the domain 

map to points in more than one prime open set in the range. For example, consider the same 

partition spaces (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) as in Section 3.1.2:  

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓} 

𝑇𝑇 = �{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑎𝑎, 𝑏𝑏,𝑓𝑓}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓},∅� 

𝑌𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} 

𝑆𝑆 = �{1,3,6,7,8}, {2,5}, {4}, {1,2,3,5,6,7,8}, {1,3,4,6,7,8}, {2,4,5}, {1,2,3,4,5,6,7,8},∅� 

Now, define the function 𝑞𝑞:𝑋𝑋 → 𝑌𝑌 as follows: 

𝑞𝑞(𝑎𝑎) = 2; 𝑞𝑞(𝑏𝑏) = 5; 𝑞𝑞(𝑐𝑐) = 𝑞𝑞(𝑑𝑑) = 4; 𝑞𝑞(𝑒𝑒) = 7;𝑞𝑞(𝑓𝑓) = 1 

The elements of {𝑎𝑎, 𝑏𝑏} ∈ 𝑇𝑇 map to elements of {2,5} ∈ 𝑆𝑆. However, the elements of 

{𝑐𝑐,𝑑𝑑, 𝑒𝑒} ∈ 𝑇𝑇 map to elements of {4} ∈ 𝑆𝑆 and to elements of {1,3,6,7,8} ∈ 𝑆𝑆.  

 

 

Figure 3.2: An Illustration of the Non-Continuous Function 𝑞𝑞 
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Thus, a prime open set in the domain maps to two different prime open sets in the range. 

By the Bubble Theorem, it can then be immediately concluded that 𝑞𝑞 is not continuous! 𝑞𝑞 

can be thought of as “popping” the bubble formed by {𝑐𝑐,𝑑𝑑, 𝑒𝑒} by mapping its elements to 

elements of two different prime open sets in 𝑆𝑆.  

3.2 Continuous Functions and Sequential Limits in Partition Spaces 

Now presented is a result detailing how continuous functions between partition 

spaces interact with the limits of sequences in their domains. It will be shown that the limits 

of the image of a sequence under a continuous function are entirely determined by the 

limits of the original sequence itself. This draws similarity to the relationship between 

continuous functions and limits of sequences in the context of real analysis (i.e., the 

sequential criterion for continuity) (Abbott, 2015).  

3.2.1 Theorem on Continuous Functions and Sequential Limits in Partition Spaces 

Theorem: Let (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) be partition spaces. Let 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 be a continuous 

function. Let (𝑥𝑥𝑛𝑛) be a sequence in 𝑋𝑋. Suppose that (𝑥𝑥𝑛𝑛) has a limit in 𝑋𝑋, so that it has the 

prime open set 𝑃𝑃 ∈ 𝑇𝑇 as its set of limits. Then, the unique prime open set 𝑄𝑄 ∈ 𝑆𝑆 satisfying 

𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄 is the set of limits of the sequence (𝑓𝑓(𝑥𝑥𝑘𝑘)). 

Proof: Since 𝑃𝑃 is the set of limits of (𝑥𝑥𝑛𝑛), all but finitely many terms of (𝑥𝑥𝑛𝑛) are 

contained in 𝑃𝑃. This implies that all but finitely many terms of the sequence (𝑓𝑓(𝑥𝑥𝑘𝑘)) are 

contained in 𝑄𝑄.  

Let 𝐿𝐿 ∈ 𝑄𝑄. As 𝑄𝑄 is a prime open set, part (a) of Theorem 2.3.1 implies that every 

open set in 𝑆𝑆 containing 𝐿𝐿 contains all but finitely many terms of (𝑓𝑓(𝑥𝑥𝑘𝑘)). So 𝐿𝐿 is a limit 

of (𝑓𝑓(𝑥𝑥𝑘𝑘)). Part (b) of Theorem 2.3.1 then implies that 𝑄𝑄 is exactly the set of limits of 

(𝑓𝑓(𝑥𝑥𝑘𝑘)).          ∎ 
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In some sense, continuous functions between partition spaces preserve the limits of 

sequences in their domains. For if the prime open set of limits of a sequence in a partition 

space is known, the prime open set of limits for the image of the sequence under a 

continuous function is known. Note that the theorem makes no comment on the number of 

limits of this image sequence. It will be demonstrated that such a continuous function can 

map a sequence in its domain to a new sequence in its codomain that possesses either an 

equal or a different number of limits. It is also worth noting that the theorem does not state 

that such a continuous function will map a sequence in its domain having no limits to 

another sequence in its codomain having no limits. It will also be demonstrated that such a 

continuous function can map a sequence in its domain that has no limits to a sequence in 

its codomain that does have a limit. 

3.2.2 Determining the Limits of the Continuous Image of a Sequence Using Theorem 3.2.1 

Again, consider the partition spaces (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) as defined in Section 3.1.2:  

𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓} 

𝑇𝑇 = �{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒}, {𝑎𝑎, 𝑏𝑏,𝑓𝑓}, {𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓},∅� 

𝑌𝑌 = {1, 2, 3, 4, 5, 6, 7, 8} 

𝑆𝑆 = �{1,3,6,7,8}, {2,5}, {4}, {1,2,3,5,6,7,8}, {1,3,4,6,7,8}, {2,4,5}, {1,2,3,4,5,6,7,8},∅� 

together with the continuous function 𝑔𝑔:𝑋𝑋 → 𝑌𝑌 from Section 3.1.2:  

𝑔𝑔(𝑎𝑎) = 𝑔𝑔(𝑏𝑏) = 4;  𝑔𝑔(𝑐𝑐) = 2;  𝑔𝑔(𝑑𝑑) = 5;  𝑔𝑔(𝑒𝑒) = 2;  𝑔𝑔(𝑓𝑓) = 8 

and the following sequences in 𝑋𝑋, as defined in Section 2.3.2: 

(𝑥𝑥𝑛𝑛) = (𝑎𝑎, 𝑎𝑎,𝑎𝑎,𝑎𝑎, 𝑎𝑎,𝑎𝑎, … ) 

(𝑦𝑦𝑛𝑛) = (𝑓𝑓, 𝑒𝑒,𝑓𝑓,𝑓𝑓,𝑎𝑎, 𝑐𝑐,𝑑𝑑,𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, 𝑐𝑐,𝑑𝑑, … ) 

(𝑧𝑧𝑛𝑛) = (𝑎𝑎, 𝑏𝑏,𝑓𝑓,𝑎𝑎, 𝑏𝑏,𝑓𝑓, 𝑎𝑎, 𝑏𝑏,𝑓𝑓,𝑎𝑎, 𝑏𝑏,𝑓𝑓, … ) 
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It was determined in Section 2.3.2 that (𝑥𝑥𝑛𝑛) had the prime open set of limits {𝑎𝑎, 𝑏𝑏}, that 

(𝑦𝑦𝑛𝑛) had the prime open set of limits {𝑐𝑐,𝑑𝑑, 𝑒𝑒}, and that (𝑧𝑧𝑛𝑛) had no limits.  

The images of these sequences under 𝑔𝑔 are as follows: 

�𝑔𝑔(𝑥𝑥𝑛𝑛)� = (4,4,4,4,4,4, … ) 

�𝑔𝑔(𝑦𝑦𝑛𝑛)� = (8,2,8,8,4,2,5,4,2,5,2,5,2,5,2, , … ) 

�𝑔𝑔(𝑧𝑧𝑛𝑛)� = (4,4,8,4,4,8,4,4,8,4,4,8, … ) 

Using Theorem 2.3.1, it can be seen that �𝑔𝑔(𝑥𝑥𝑛𝑛)� has the prime open set of limits {4}, 

which is precisely the prime open set in 𝑌𝑌 that 𝑔𝑔 maps {𝑎𝑎, 𝑏𝑏} into. 

 

 

Figure 3.3: The Image of the Sequence  
(𝑥𝑥𝑛𝑛) Under the Function 𝑔𝑔, 
Together With the Image of Its 
Prime Open Set of Limits 

 
 

In the same way, it can be seen that �𝑔𝑔(𝑦𝑦𝑛𝑛)� has the prime open set of limits {2,5}, which 

is the prime open set that 𝑔𝑔 maps {𝑐𝑐,𝑑𝑑, 𝑒𝑒} into. 
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Figure 3.4: The Image of the Sequence (𝑦𝑦𝑛𝑛) Under the Function 𝑔𝑔,  
Together With the Image of Its Prime Open Set of Limits 

 
 

Notice that the number of limits of �𝑔𝑔(𝑦𝑦𝑛𝑛)� is less than the number of limits of (𝑦𝑦𝑛𝑛). Using 

Theorem 2.3.1, it is also quickly verified that �𝑔𝑔(𝑧𝑧𝑛𝑛)� has no limits in 𝑌𝑌.  

 

 

Figure 3.5: The Image of the Sequence (𝑧𝑧𝑛𝑛) Under the Function 𝑔𝑔  
 
 

However, as previously stated, it could very well be that a continuous function 

between (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) maps (𝑧𝑧𝑛𝑛) to a sequence in 𝑌𝑌 having a limit. For example, 

consider the function 𝑔𝑔′:𝑋𝑋 → 𝑌𝑌 defined as follows: 

𝑔𝑔′(𝑎𝑎) = 𝑔𝑔′(𝑏𝑏) = 3;  𝑔𝑔′(𝑐𝑐) = 2;  𝑔𝑔′(𝑑𝑑) = 5;  𝑔𝑔′(𝑒𝑒) = 2;  𝑔𝑔′(𝑓𝑓) = 8 

𝑔𝑔’ can be visualized using the following diagram: 
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Figure 3.6: An Illustration of the Function 𝑔𝑔′ 
 
 

The image of (𝑧𝑧𝑛𝑛) under 𝑔𝑔′ is given by 

�𝑔𝑔′(𝑧𝑧𝑛𝑛)� = (3,3,8,3,3,8,3,3,8,3,3,8, … ) 

which, by Theorem 2.3.1, has the prime open set of limits {1,3,6,7,8} in 𝑌𝑌.  

3.3 Homeomorphisms Between Partition Spaces 

The Bubble Theorem demonstrates an interesting connection between continuous 

functions and prime open sets. Since the definition of a homeomorphism between 

topological spaces is based upon continuous functions, one might predict that the Bubble 

Theorem can be used to describe homeomorphisms between partition spaces from the 

perspective of prime open sets. As will be demonstrated, the Bubble Theorem can indeed 

be used to derive an alternative set of necessary and sufficient conditions for a function 

between partition spaces to be a homeomorphism, which are based upon the images of 

prime open sets.  

3.3.1 Theorem on Homeomorphisms Between Partition Spaces 

Theorem: Let (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) be partition spaces. A function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is a 

homeomorphism if and only if: 

(a).  𝑓𝑓 is a bijection, and 
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(b).  for every prime open set 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 

𝑓𝑓[𝑃𝑃] = 𝑄𝑄. 

Proof: From the definition of a homeomorphism, 𝑓𝑓 is a homeomorphism if and only 

if the following hold: 

(a).  𝑓𝑓 is a bijection. 

(i).  𝑓𝑓 is continuous  

(ii).  𝑓𝑓−1 is continuous  

Using the Bubble Theorem, these statements are equivalent to the following:   

(a).  𝑓𝑓 is a bijection. 

(I). For all prime open sets 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] ⊆

𝑄𝑄. 

(II). For all prime open sets 𝑄𝑄 ∈ 𝑆𝑆, there exists a prime open set 𝑅𝑅 ∈ 𝑇𝑇 such that 

(𝑓𝑓−1)[𝑄𝑄] ⊆ 𝑅𝑅.  

Thus, to prove the corollary, one need only show that Statements (a), (I), and (II) together 

are equivalent to (a) and (b) together.  
 
⇒) First, suppose that (a), (I), and (II) hold. Let 𝑃𝑃′ ∈ 𝑇𝑇 be a prime open set. Then, 

there exists a prime open set 𝑄𝑄′ ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃′] ⊆ 𝑄𝑄′. Then, 𝑃𝑃′ ⊆ (𝑓𝑓−1)[𝑄𝑄′]. As 𝑄𝑄′ is 

a prime open set, there also exists a prime open set 𝑅𝑅′ ∈ 𝑇𝑇 such that (𝑓𝑓−1)[𝑄𝑄′] ⊆ 𝑅𝑅′. Then, 

𝑃𝑃′ ⊆ (𝑓𝑓−1)[𝑄𝑄′] ⊆ 𝑅𝑅′, in which case 𝑃𝑃′ ⊆ 𝑅𝑅′. Since 𝑅𝑅′ is a prime open set in 𝑇𝑇, this implies 

that 𝑃𝑃′ = 𝑅𝑅′. Then, 𝑃𝑃′ ⊆ (𝑓𝑓−1)[𝑄𝑄′] ⊆ 𝑃𝑃′, which implies that (𝑓𝑓−1)[𝑄𝑄′] = 𝑃𝑃′. Thus, 

𝑓𝑓[𝑃𝑃′] = 𝑄𝑄′. Thus, for every prime open set 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such 
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that 𝑓𝑓[𝑃𝑃] = 𝑄𝑄. So (b) holds. Hence, Statements (a), (I), and (II) imply Statements (a) and 

(b). 
 
⇐) Now, suppose that (a) and (b) hold. As it is assumed that for all prime open sets 

𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] = 𝑄𝑄, it immediately follows that 

for all prime open sets 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑓𝑓[𝑃𝑃] ⊆ 𝑄𝑄. 

Thus, (I) holds.  

This assumption also implies that for all prime open sets 𝑃𝑃 ∈ 𝑇𝑇, there exists a prime 

open set 𝑄𝑄 ∈ 𝑆𝑆 such that 𝑃𝑃 = (𝑓𝑓−1)[𝑄𝑄]. As the union ∪ 𝑃𝑃 of all such 𝑃𝑃 equals 𝑋𝑋, 

𝑌𝑌 = 𝑓𝑓[𝑋𝑋] = 𝑓𝑓[∪ 𝑃𝑃] = 𝑓𝑓[∪ (𝑓𝑓−1)[𝑄𝑄]] =∪ 𝑓𝑓[(𝑓𝑓−1)[𝑄𝑄]] =∪ 𝑄𝑄 

In this way, all such prime open sets 𝑄𝑄 ∈ 𝑆𝑆 are included. So, for all prime open sets 𝑄𝑄 ∈ 𝑆𝑆, 

there exists a prime open set 𝑃𝑃 ∈ 𝑇𝑇 such that (𝑓𝑓−1)[𝑄𝑄] = 𝑃𝑃. It immediately follows that 

(𝑓𝑓−1)[𝑄𝑄] ⊆ 𝑃𝑃. Thus, (II) holds. Hence, Statements (a) and (b) imply Statements (a), (I), 

and (II).          ∎ 

The theorem states that, for partition spaces (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆), a bijection 𝑓𝑓 between 

𝑋𝑋 and 𝑌𝑌 is a homeomorphism exactly when 𝑓𝑓 maps each prime open set in 𝑇𝑇 onto exactly 

one prime open set in 𝑆𝑆. In that case, 𝑓𝑓 simply “renames” the elements of each prime open 

set in 𝑇𝑇 using the elements of exactly one prime open set in 𝑆𝑆. Then, 𝑓𝑓 demonstrates not 

only that 𝑋𝑋 and 𝑌𝑌 are essentially the same set, but also that the partitions on 𝑋𝑋 and 𝑌𝑌 used 

to create the topologies 𝑇𝑇 and 𝑆𝑆 are essentially the same. Since the partitions on the sets 

define the corresponding partition spaces (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆), in this way, 𝑓𝑓 communicates 

that the spaces have the exact same topological structure. That is, 𝑓𝑓 conveys that the two 

spaces are essentially the same, just with different names for their points.  
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This is exactly the notion captured by a homeomorphism, and it is reflected 

beautifully in the context of partition spaces. Since prime open sets entirely determine the 

structure of a partition space, if the prime open sets within two partition spaces are the same 

up to renaming of the elements, then the spaces in their entirety must be topologically the 

same! 

3.3.2 Demonstrating That Partition Spaces Are Homeomorphic Using Theorem 3.3.1 

Theorem 3.3.1 simplifies the task of demonstrating that two partition spaces are 

indeed homeomorphic. For example, let 𝑋𝑋 be the following set of eight numbers:  

𝑋𝑋 = {1,3,5,7,9,11,13,15} 

together with the following partition topology 𝑇𝑇: 

𝑇𝑇 = �{1,5}, {3,13}, {7,11,15}, {9}, {1,3,5,13}, {1,5,7,11,15}, {1,5,9}, 

  {3,7,11,13,15}, {3,9,13}, {7,9,11,15}, {1,3,5,7,9,11,13,15},∅} 

Let 𝑌𝑌 be another set of eight numbers:  

𝑌𝑌 = {2,4,6,8,10,12,14,16} 

together with the following partition topology 𝑆𝑆: 

𝑆𝑆 = �{2,8,16}, {4,6}, {10}, {12,14},{2,4,6,8,16}, {2,8,10,16}, {2,8,12,14,16}, 

{4,6,10}, {4,6,12,14}, {10,12,14}, {2,4,6,8,10,12,14,16},∅ } 

At first glance, the spaces (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) may appear to be unrelated. Their elements are 

named differently, and their topologies do not immediately look the same. 
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Figure 3.7: Two Partition Spaces That May Initially Seem Topologically 
Distinct 

 
 

However, notice that both 𝑋𝑋 and 𝑌𝑌 are sets of eight elements, implying that there 

exists a bijection between 𝑋𝑋 and 𝑌𝑌. Furthermore, notice that both 𝑇𝑇 and 𝑆𝑆 contain one prime 

open set of one element, two prime open sets of two elements, and one prime open set of 

three elements. These observations suggest that the spaces are in fact homeomorphic. 

 To prove this, one need only come up with a specific homeomorphism between 

the two spaces; using Theorem 3.3.1, one need only create a bijection 𝐻𝐻:𝑋𝑋 → 𝑌𝑌 that sends 

the elements of each prime open set in 𝑇𝑇 to the elements of exactly one prime open set in 

𝑆𝑆. One such choice of mapping for the prime open sets is 

{1,5}
𝐻𝐻
→ {4,6} 

{3,13}
𝐻𝐻
→ {12,14} 

{7,11,15}
𝐻𝐻
→ {2,8,16} 

{9}
𝐻𝐻
→ {10} 

Thus, if 𝐻𝐻 is defined as follows: 

𝐻𝐻(1) = 4;  𝐻𝐻(5) = 6;  𝐻𝐻(3) = 12;  𝐻𝐻(13) = 14;  𝐻𝐻(7) = 2;  

𝐻𝐻(11) = 8;  𝐻𝐻(15) = 16;  𝐻𝐻(9) = 10 
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𝐻𝐻 is guaranteed to be homeomorphism by Theorem 3.3.1. 

 

Figure 3.8: An Illustration of the Homeomorphism 𝐻𝐻 
 
 

With the visual aid of the diagram, the structural similarities of the two spaces are now 

clearly reflected. Though the bubbles around the points may be drawn differently, they 

describe the same partition space.  

3.3.3 Demonstrating That Partition Spaces Are Not Homeomorphic Using Theorem 3.3.1 

In addition to making the construction of homeomorphisms between partition 

spaces simpler, Theorem 3.3.1 also reduces the work needed to show that two partition 

spaces are not homeomorphic. Consider the same partition space (𝑋𝑋,𝑇𝑇) from Section 3.3.2: 

𝑋𝑋 = {1,3,5,7,9,11,13,15} 

𝑇𝑇 = �{1,5}, {3,13}, {7,11,15}, {9}, {1,3,5,13}, {1,5,7,11,15}, {1,5,9}, 

  {3,7,11,13,15}, {3,9,13}, {7,9,11,15}, {1,3,5,7,9,11,13,15},∅} 

Let 𝑌𝑌 be the same set of eight numbers from Section 3.3.2: 

𝑌𝑌 = {2,4,6,8,10,12,14,16} 

but define a new partition topology 𝑅𝑅 on 𝑌𝑌: 

𝑅𝑅 = �{2,14}, {4,8,12,16}, {6,10},{2,4,8,12,14,16}, {2,6,10,14}, {4,6,8,10,12,16} 

{2,4,6,8,10,12,14,16},∅} 
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Upon inspection, it can be seen that 𝑅𝑅 has a prime open set containing four 

elements. In order to map each prime open set in 𝑇𝑇 to exactly one prime open set in 𝑅𝑅 using 

a bijection, 𝑇𝑇 would then need to have a prime open set containing exactly four elements.  

However, there are no prime open sets in 𝑇𝑇 that contain exactly four elements. Hence, by 

Theorem 3.3.1, it is impossible for any bijection between 𝑋𝑋 and 𝑌𝑌 to be a homeomorphism 

between (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆). Thus, it can be concluded that (𝑋𝑋,𝑇𝑇) and (𝑌𝑌, 𝑆𝑆) are not 

homeomorphic! This conclusion supports the intuition of homeomorphisms describing 

structural similarity: the two spaces are fundamentally different, having been constructed 

from partitions of different structure.
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