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ENHANCING ARRAY BASED OPERATIONS:
A NUMPY INSPIRED APPROACH IN DIABLO

FRAMEWORK

Priyank Gupta

The University Of Texas At Arlington, 2024

Supervising Professor: Dr. Leonidas Fegaras

Abstract
This thesis introduces an innovative approach within the DIABLO (Data-Intensive

Array-Based Loop Optimizer) framework, which integrates NumPy-inspired syntax and
functionalities to facilitate the transition from single node array-based scientific comput-
ing to scalable, distributed data-parallel programming. This integration aims to reduce
the learning curve and enhance the usability of distributed computing technologies
for scientific researchers traditionally accustomed to NumPy’s operational paradigms.
DIABLO leverages advanced distributed computing techniques to optimize traditional
matrix operations, such as addition, subtraction, and multiplication, critical for numerous
applications ranging from physics to machine learning. By reinterpreting these matrix
operations to run efficiently over distributed architectures, DIABLO not only ensures
computational integrity and scalability but also significantly enhances execution speeds
compared to traditional single-node implementations. The effectiveness of DIABLO
is demonstrated through detailed benchmarks that compare its performance with tradi-
tional methods, highlighting substantial improvements in computational efficiency and
resource utilization. The results affirm that DIABLO’s approach to integrating familiar
numerical computing techniques with robust distributed processing capabilities sets a
new standard for scientific computing, making it an indispensable tool for researchers
dealing with large-scale data sets.
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1 Introduction
The continuous advancement in scientific computing necessitates increasingly sophisticated method-
ologies capable of handling extensive datasets and executing complex data manipulations efficiently.
Traditionally, array-based programming facilitated by tools such as FORTRAN, MATLAB, and C has
been the cornerstone of data analysis within the scientific community. However, these conventional
methods are increasingly inadequate due to their limited scalability in the context of the exponential
growth of data volumes and the complexity of modern computational tasks. This challenge compels
a paradigm shift towards distributed, data-parallel frameworks to meet current scientific demands.

1.1 The Challenge of Contemporary Scientific Computing
Contemporary scientific research generates large volumes of data that require robust analytical ca-
pabilities for efficient analysis. Effectively managing these data requires a transition from traditional
loop-based imperative programming models to more dynamic and scalable distributed computing
paradigms. A significant barrier to this transition is the existing familiarity within the scientific
community with straightforward, element-wise manipulations as exemplified by tools like NumPy.
Moreover, while existing distributed computing frameworks offer powerful computational possibili-
ties, they often introduce a steep learning curve and do not provide the intuitive manipulation of data
structures that scientists prefer.

1.2 The Innovative Approach of DIABLO
The Data-Intensive Array-Based Loop Optimizer (DIABLO) represents an innovative approach to ad-
dressing these challenges. Converts traditional loop-based computations into distributed data-parallel
programs without compromising the simplicity and intuitiveness essential to scientific research. The
introduction of DIABLO is not solely about enhancing scalability; it is also about making advanced
computational paradigms accessible to scientists without the need for extensive retraining or in-depth
knowledge of parallel programming techniques.

1.3 Integrating NumPy: Facilitating a Seamless Transition
NumPy is integral to scientific computing, celebrated for its efficient manipulation of large arrays
and matrices through a straightforward interface. The integration of NumPy-inspired syntax and
functionalities within DIABLO is designed to facilitate a seamless transition for users. This strategic
incorporation ensures that scientists can continue employing familiar numerical and array-based oper-
ations while also taking advantage of the superior performance and scalability offered by DIABLO’s
distributed computing architecture.
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2 Background
This section elaborates on the evolution of array-based operations within scientific computing, em-
phasizing the pivotal transition from traditional single-node systems to modern, scalable, distributed
computing frameworks. It provides a comprehensive overview of the DIABLO framework and
NumPy’s profound influence on it, setting the stage for their integration in addressing contemporary
computational challenges.

2.1 DIABLO
DIABLO (Data-Intensive Array-Based Loop Optimizer) represents a significant advancement in
scientific computing, designed to address the increasing complexity and scale of data by leveraging
distributed computing technologies.

2.1.1 DIABLO Framework

The architecture of DIABLO is specifically engineered to transform traditional, imperative program-
ming constructs into scalable, distributed, data-parallel programs. Built on top of Scala, DIABLO
seamlessly integrates with Apache Spark, enhancing its ability to efficiently distribute tasks across a
computing cluster.

Core Architecture:

• Translation Mechanism: At the heart of DIABLO’s architecture lies a sophisticated transla-
tion mechanism that automates the conversion of imperative loops into parallel data operations.
This feature allows scientists to focus on algorithmic development without concerning them-
selves with the intricacies of parallel processing.

• Optimization Engine: DIABLO’s optimization engine employs advanced algorithms to an-
alyze computational dependencies and data flow, optimizing both for execution speed and
resource utilization. This engine plays a crucial role in ensuring that the distributed sys-
tem operates at peak efficiency, dynamically adjusting task allocations based on workload
assessments.

2.1.2 DIABLO’s Innovation

DIABLO introduces a suite of innovations designed to enhance both the performance and accessibility
of distributed scientific computing tools:

• User-Centric Design: By integrating a NumPy-inspired syntax, DIABLO minimizes the
barrier to entry for researchers accustomed to conventional array-based tools, facilitating their
transition to distributed computing environments.

• Adaptive Resource Management: Beyond static resource allocation, DIABLO implements
dynamic resource management strategies that adapt in real-time to changes in computational
demand, ensuring optimal performance across diverse workloads.

2.2 NumPy
As a foundational tool in the field of scientific computing, NumPy has significantly influenced the
development of numerous computational frameworks, including DIABLO.
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2.2.1 NumPy’s Influence on DIABLO

NumPy’s architecture and design have profoundly shaped DIABLO’s approach to array manipula-
tions, bringing a high level of abstraction and simplicity to complex array operations in a distributed
context.

Impact and Adaptations:

• Simplified Array Operations: NumPy’s straightforward approach to handling arrays has
been adapted in DIABLO to maintain ease of use while extending capabilities to distributed
systems.

• Functional Programming Adaptation: Influenced by NumPy, DIABLO promotes a func-
tional programming paradigm, which is inherently more compatible with distributed computing
than the imperative style predominant in traditional scientific computing.

2.2.2 Spark vs NumPy

Understanding the computational differences between Spark and NumPy is crucial for appreciating
the challenges and innovations of DIABLO:

• Performance and Scalability: While NumPy is optimized for high-performance computa-
tions on single nodes, Spark excels in scalability, capable of distributing processes across
thousands of nodes. This capability addresses the limitations of NumPy in handling extraor-
dinarily large datasets.

• Usability vs. Capability: NumPy offers unparalleled simplicity in array manipulations,
making complex tasks accessible to non-specialists. Spark, while powerful, requires a steeper
learning curve due to its more abstract data handling and task distribution models. DIABLO
seeks to bridge this gap by combining the usability of NumPy with the distributed capability
of Spark.

3 Matrix
A matrix is a mathematical concept, primarily used in linear algebra, that represents a rectangular
array of numbers, symbols, or expressions, arranged in rows and columns. The individual items of
a matrix are called its elements or entries.

A matrix with m rows and n columns is known as a m× n matrix, often written as:
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


where aij denotes the element in the i-th row and j-th column.
Matrices serve various purposes in mathematics and applied sciences:

1. Representation of Linear Transformations: Matrices are often used to represent linear
transformations from one vector space to another.
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2. Systems of Linear Equations: They provide a compact way to represent and solve systems
of linear equations.

3. Data Representation: In computer science and statistics, matrices are used to organize and
process data, such as in the case of adjacency matrices in graph theory or data tables in machine
learning.

4. Geometric Transformations: In computer graphics, matrices are used to perform transfor-
mations such as translation, rotation, and scaling of objects.

5. Eigenvalues and Eigenvectors: These are key concepts in linear algebra involving matrices,
important in various fields like quantum mechanics, vibration analysis, and face recognition
in computer vision.

6. Matrix Calculus: This extends concepts of calculus to matrix-valued functions, crucial in
multivariate statistical analysis and optimization problems.

The study of matrices involves various operations like addition, subtraction, multiplication, and
finding inverses, as well as exploring properties like determinants, rank, and eigenvalues. Matrices
are fundamental in both theoretical and applied mathematics, with wide-ranging applications across
science and engineering.

3.1 Matrix Arithmetic
3.1.1 Matrix Addition

Matrix addition is a fundamental operation in linear algebra, where two matrices of the same
dimensions are added together to produce a new matrix. The operation is performed element-wise,
meaning each element in the resulting matrix is the sum of the elements at the corresponding positions
in the input matrices.

To add two matrices, they must be of the same size, i.e., they must have the same number of rows
and columns. The sum of two m× n matrices A and B, denoted as C = A+B, is calculated as:

Cij = Aij +Bij

where Cij is the element in the i-th row and j-th column of matrix C, and Aij and Bij are the
corresponding elements in matrices A and B, respectively.

Matrix addition is commutative and associative, meaning that the order of addition does not
affect the result:

- Commutative: A+B = B +A - Associative: (A+B) + C = A+ (B + C)

Implementation The algorithm implements matrix addition using list comprehension. Given two
matrices A and B, each element aij of A and bij of B is iterated over. The addition is performed
element-wise:

C = [aij + bij | aij ∈ A, bij ∈ B, for all i, j]

Here, C is the resulting matrix, aij and bij are elements of matrices A and B at the i-th row and
j-th column, respectively. The addition aij + bij is performed only when the corresponding indices
of A and B match.
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3.1.2 Matrix Subtraction

Matrix subtraction is another fundamental operation in linear algebra, analogous to matrix addition
but involving the subtraction of corresponding elements of two matrices. As with addition, for matrix
subtraction to be defined, both matrices must have the same dimensions, meaning they must have the
same number of rows and columns.

Given two matrices A and B of size m×n, their difference, denoted as C = A−B, is computed
as follows:

Cij = Aij −Bij

Here, Cij represents the element in the i-th row and j-th column of the resulting matrix C, while
Aij and Bij are the corresponding elements in matrices A and B, respectively.

Matrix subtraction, like addition, is performed element-wise. However, unlike addition, matrix
subtraction is not commutative, meaning A−B ̸= B −A in general.

Implementation The algorithm implements matrix subtraction using list comprehension. Given
two matrices A and B, each element aij of A and bij of B is iterated over. The subtraction is
performed element-wise:

C = [aij − bij | aij ∈ A, bij ∈ B, for all i, j]

Here, C is the resulting matrix, aij and bij are elements of matrices A and B at the i-th row
and j-th column, respectively. The subtraction aij − bij is performed only when the corresponding
indices of A and B match.

3.1.3 Matrix Multiplication

Matrix multiplication is a central operation in linear algebra, differing significantly from element-
wise operations like addition and subtraction. In matrix multiplication, the product of two matrices
is not simply the element-wise product of their individual elements, but a more complex operation.

Given two matrices, A of size m× n and B of size n× p, their product, denoted as C = AB, is
a new matrix of size m× p. The element in the i-th row and j-th column of matrix C is calculated
as the dot product of the i-th row of A and the j-th column of B:

Cij =

n∑
k=1

Aik ·Bkj

Here,
∑

denotes the summation, and the product Aik · Bkj is the multiplication of the corre-
sponding elements from the row of A and the column of B.

Key properties of matrix multiplication include:

1. Non-Commutativity: In general, AB ̸= BA.

2. Associativity: (AB)C = A(BC).

3. Distributivity: A(B + C) = AB +AC and (A+B)C = AC +BC.
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Implementation The implementation of matrix multiplication is as follows:
The algorithm implements matrix multiplication using list comprehension and higher-order

functions. Given matrices A and B, the product C = AB is calculated as follows:

Cij =

n∑
k=1

aik · bkj

This is achieved by iterating over each element aik of A and bkj of B, multiplying them, and
then summing these products for each pair of indices (i, j). The ‘reduce‘ function aggregates these
products to obtain each element cij of the resulting matrix C. The ‘GroupByQual‘ function groups
these results based on unique row i and column j indices.

3.2 Matrix Slicer
In mathematics, particularly in the field of linear algebra, ”matrix slicing” refers to the process of
extracting specific rows, columns, or submatrices from a given matrix. This process is fundamental
in various operations and analyses involving matrices. Here’s a more detailed explanation of how
matrix slicing works:

1. Selecting Rows or Columns: You can select specific rows or columns from a matrix. For
example, in a matrix A of size m× n, you can select the ith row or jth column to form a row
vector or a column vector, respectively.

2. Submatrices: A submatrix is obtained by deleting any collection of rows and/or columns
from the original matrix. For example, in a 4× 4 matrix, if you remove the 2nd and 4th rows
and the 3rd column, you’ll end up with a 2× 3 submatrix.

3. Block Matrices: Sometimes, a large matrix is partitioned into smaller ’blocks’ or submatrices,
which can be individually manipulated. This is especially useful in algorithms for matrix
multiplication, inversion, and solving linear systems.

4. Applications in Mathematical Operations: Slicing is often used in operations like calculating
the determinant (where you might use a smaller submatrix obtained by excluding a row and a
column), finding minors and cofactors, and in Gaussian elimination.

5. Notation: The notation for slicing can vary, but it often involves specifying the indices of the
rows and columns you want to include or exclude.

6. Computational Efficiency: In computational applications, efficient matrix slicing is crucial
for handling large datasets or performing complex operations like matrix factorization.

To demonstrate this concept more concretely, let’s consider an example. If we have a matrix:

A =

1 2 3
4 5 6
7 8 9


and we want to slice this matrix to get a submatrix that consists of the first and third rows and the

second and third columns, the resulting submatrix would be:

Asliced =

(
2 3
5 6

)

6



This operation is a fundamental aspect of many mathematical and computational procedures
involving matrices.

3.2.1 Implementation

Transform(s) =


e if pattern is e ∼ None
Range(e, e2, IntConst(1)) if pattern is e ∼ Some( ∼ e2 ∼ None)
Range(e, e2, e3) if pattern is e ∼ Some( ∼ e2 ∼ Some( ∼ e3))

The above code snippet defines a pattern matching structure where:

• The Index function is called with two arguments: an expression e and a mapping of s.

• The mapping of s involves three cases:

1. If only one element e is provided without a range, it returns e.
2. If a range is specified as e to e2 with an implicit step of 1 (denoted by IntConst(1)),

it returns a Range from e to e2 with a step of 1.
3. If a range with an explicit step is provided (from e to e2 with step e3), it returns a Range

with the specified step.

This implementation suggests a flexible approach to slicing matrices, allowing for single elements,
ranges with default steps, and ranges with specified steps.

4 Performance Comparison of Matrix Arithmetic Operations
This section provides an empirical comparison of matrix arithmetic operations performance between
NumPy, executed within Google Colab, and DIABLO, run on the Expanse cluster at the San Diego
Supercomputer Center (SDSC). We assess how each platform handles matrix addition, subtraction,
and multiplication with varying sizes of data sets.

4.1 Experimental Setup
The experiments were designed to evaluate the scalability and efficiency of matrix operations imple-
mented in NumPy and DIABLO across different computational loads.

4.1.1 Hardware and Software Configuration

• NumPy Experiments: Executed on Google Colab, which offers a cloud-based Python envi-
ronment on virtual machines with variable configurations. Each test run was standardized to
ensure consistent resource availability.

• DIABLO Experiments: Performed on the Single Node Expanse cluster at San Diego Super
Computer Center. It has an AMD EPYC 7742 at 2.25GHz, with 64 cores, 256GB RAM,
and 1TB SSD. For our experiments, we used Apache Spark 3.2.1 running on Apache Hadoop
3.2.2. All experiments were performed on randomly generated Matrices.
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4.1.2 Data Sizes

Tests were carried out with matrix sizes of 100x100, 500x500, and 1000x1000 elements to challenge
the systems under moderate and high computational loads.

4.2 Performance Metrics
Performance was measured by execution time, that is, the total time required to complete each
operation. Each evaluation was repeated five times each. Also in each test cases matrix slicing is
used.

(a) Comparison of Addition-Subtraction operation (b) Comparison of Multiplication operation

4.3 Results and Discussion
4.3.1 Matrix Addition, Subtraction, and Multiplication

Matrix Addition - Subtraction The results for matrix addition indicate that NumPy consistently
outperforms DIABLO for smaller matrix sizes (100x100), with faster execution times averaging
around 4 seconds for DIABLO compared to just above 3.5 seconds for NumPy. However, as the
matrix size increases, the performance gap between the two platforms narrows. For matrices of
size 500x500 and 1000x1000, DIABLO’s execution times show a significant increase, reflecting the
overhead involved in distributing the computation across multiple nodes. Despite this, DIABLO
maintains competitive performance, particularly at the largest tested size (1000x1000), where it
averages approximately 2400 milliseconds, against the drastically increasing times of NumPy which
peaks around 500 milliseconds.

Matrix Multiplication Matrix multiplication, a more computationally intensive operation, show-
cases DIABLO’s scalability. For the smallest matrices (100x100), DIABLO executes multiplications
in approximately 1.3 seconds on average, which is significantly faster compared to NumPy’s 12 sec-
onds. As the matrix size grows, DIABLO’s performance advantage becomes even more pronounced.
At 1000x1000 matrix size, DIABLO completes operations in about 1489 milliseconds on average,
whereas NumPy requires up to 2546 milliseconds, underlining DIABLO’s superior performance in
handling complex, large-scale computations.
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4.3.2 Summary of Findings

The data from these experiments clearly demonstrate that while NumPy is advantageous for smaller
data sets due to its lower overhead and faster execution, DIABLO excels in a distributed computing
environment, particularly when dealing with larger matrices. DIABLO’s architecture effectively
minimizes the increased computational complexity associated with scaling up matrix sizes, making it
particularly well-suited for high-performance, large-scale scientific computing tasks. These findings
reinforce the importance of choosing the right computational tools based on the specific requirements
and scales of the tasks involved.

5 Conclusion
This thesis has explored the integration of NumPy-inspired functionalities into the DIABLO frame-
work to enhance array-based operations within distributed data-parallel environments. The innovative
adaptation of familiar NumPy operations into DIABLO’s architecture has proven not only feasible but
highly effective, bridging the gap between traditional single-node computing and modern distributed
systems.

The comparative analysis of matrix operations between NumPy and DIABLO underscores a
crucial insight: the choice of computational tools is highly dependent on the nature and size of the
dataset being processed. Although NumPy offers superior performance for smaller matrices, its
limitations become apparent as the data scale increases. In contrast, DIABLO excels in managing
larger datasets, where its distributed nature and optimization strategies significantly reduce execution
times and enhance computational efficiency.

DIABLO’s performance in handling complex matrix operations such as addition, subtraction, and
multiplication across varying data sizes highlights its potential to serve as a robust tool in scientific
computing. Its user-centric design, which mirrors the simplicity and familiarity of NumPy, makes it
an attractive choice for researchers transitioning to distributed computing environments.

Future work should focus on expanding DIABLO’s functionalities and improving its efficiency
further, possibly by incorporating more sophisticated data handling and parallel processing tech-
niques. Additionally, extending DIABLO’s capabilities to integrate seamlessly with other scientific
computing tools could broaden its applicability and appeal.

Ultimately, the successful implementation of DIABLO in a real-world scientific computing
context demonstrates its potential to significantly impact how research is conducted in fields that rely
heavily on large-scale data analysis. By reducing the barriers to entry for using distributed systems
and maintaining the integrity and simplicity of traditional methods, DIABLO stands as a pivotal
development in the evolution of scientific computing tools.
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