
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2019 Spring Honors Capstone Projects Honors College

5-1-2019

INTELLIGENT PROBLEM SOLVER FOR DISCRETE STRUCTURES INTELLIGENT PROBLEM SOLVER FOR DISCRETE STRUCTURES

Mohammed Ali

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2019

Recommended Citation Recommended Citation
Ali, Mohammed, "INTELLIGENT PROBLEM SOLVER FOR DISCRETE STRUCTURES" (2019). 2019 Spring
Honors Capstone Projects. 11.
https://mavmatrix.uta.edu/honors_spring2019/11

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2019 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2019
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2019?utm_source=mavmatrix.uta.edu%2Fhonors_spring2019%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2019/11?utm_source=mavmatrix.uta.edu%2Fhonors_spring2019%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Mohammed Ali 2019

All Rights Reserved

INTELLIGENT PROBLEM SOLVER FOR

DISCRETE STRUCTURES

by

MOHAMMED ALI

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2019

iii

ACKNOWLEDGMENTS

Firstly, I would like to thank Dr. Conly, my senior project mentor, who has been

an excellent guide for me throughout the development of the project. Next, I would like to

thank my team, The Machine Team, for sticking with me through thick and thin over the

hardships and successes we have undergone during the project. I would also like to thank

the Honors College advisors/staff who were available and willing to help me all the time.

They helped me understand every step that I had to do to complete my Honors degree in

time.

Finally, I want to thank my family for supporting and believing in me. Thank you

so much for the blessings you have showered on me during my time in college. I would

not have gotten so far without you all looking after me and having my back even though

we were thousands of miles away.

May 03, 2019

iv

ABSTRACT

INTELLIGENT PROBLEM SOLVER FOR

DISCRETE STRUCTURES

Mohammed Ali, BS Software Engineering

The University of Texas at Arlington, 2019

Faculty Mentor: Christopher Conly

Online calculators have been on rise in the past few years. An online calculator for

discrete mathematics is almost impossible to find. There are few online calculators that

take up this challenge, but they have very limited functionality. This problem is mainly

because discrete math problems have their own set of rules that apply only to that problem.

We wrote a modified forward chaining algorithm on Wolfram Programming Lab that can

solve discrete mathematics problems. We also created a beautiful front-end using React

and Materials-UI framework. An application program interface (API) will be used to

connect the backend with the front-end. The problem that the user types will be put in

proper format and sent to the backend to be processed. The step-by-step solution is then

returned that is displayed to the user.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... ix

Chapter

 1. INTRODUCTION ... 1

 1.1 Vision ... 1

 1.2 Mission ... 1

 1.3 Background .. 1

 1.4 Related Work ... 2

 1.5 Approach .. 3

 2. REQUIREMENTS ... 4

 2.1 Customer Requirements ... 4

 2.1.1 Web Based GUI .. 4

 2.1.2 Input Field for Problem ... 4

 2.1.3 Solution Delivery to the User ... 5

 2.1.4 Step Elaboration .. 5

 2.2 Packaging Requirements .. 5

 2.2.1 Web Application Requirements .. 5

 2.2.2 Web Server Requirements .. 6

vi

 2.3 Performance Requirements .. 6

 2.3.1 Processing ... 6

 2.4 Maintenance and Support Requirements ... 6

 2.4.1 Web Server Maintainability Requirement 6

 2.4.2 Problem Expansion Requirement ... 6

 3. FEATURES AND FUNCTIONS .. 7

 4. ARCHITECTURAL DESIGN... 8

 4.1 Interface ... 8

 4.2 Knowledge Base .. 9

 4.3 Inference Engine .. 9

 4.4 Explanation Component ... 9

 5. DETAILED DESIGN .. 10

 5.1 Inference Engine Layer .. 10

 5.1.1 Inference Algorithm Subsystem ... 10

 5.1.1.1 Subsystem Software Dependencies 11

 5.1.1.2 Subsystem Programming Languages 11

 5.1.1.3 Subsystem Data Processing .. 11

 5.1.2 Working Memory Subsystem ... 11

 5.1.2.1 Subsystem Software Dependencies 11

 5.1.2.2 Subsystem Programming Languages 11

 5.1.2.3 Subsystem Data Structures ... 12

 5.1.2.4 Subsystem Data Processing .. 12

 5.2 Explanation Layer .. 12

vii

 5.2.1 Full Solution Window and Step Processor 12

 5.2.1.1 Subsystem Software Dependencies 12

 5.2.1.2 Subsystem Programming Languages 12

 5.2.1.3 Subsystem Data Structures ... 13

 5.2.1.4 Subsystem Data Processing .. 13

 5.3 Interface Layer ... 13

 5.3.1 Image Recognizer Subsystem ... 13

 5.3.1.1 Subsystem Software Dependencies 13

 5.3.1.2 Subsystem Programming Languages 13

 5.3.1.3 Subsystem Data Structures ... 13

 5.3.1.4 Subsystem Data Processing .. 13

 5.3.2 Problem Identifier Subsystem ... 14

 5.3.2.1 Subsystem Programming Languages 14

 5.3.2.2 Subsystem Data Structures ... 14

 5.3.2.3 Subsystem Data Processing .. 14

 5.3.3 Controller Subsystem .. 14

 5.3.3.1 Subsystem Programming Languages 14

 5.4 Knowledge Base Layer .. 15

 5.4.1 Knowledge Domain Subsystem .. 15

 5.4.1.1 Subsystem Software Dependencies 15

 5.4.1.2 Subsystem Data Structures ... 15

 5.4.1.3 Subsystem Data Processing .. 15

 6. SYSTEM INNER WORKING .. 16

viii

 7. WEB APPLICATION FRONT-END .. 18

 8. CONCLUSION .. 22

REFERENCES .. 23

BIOGRAPHICAL INFORMATION ... 24

 ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Agile Software Development Methodology .. 3

4.1 Basic Design of the System ... 8

5.1 Detailed Design of the System ... 10

7.1 Home Page of the Web Application .. 18

7.2 Home/PropositionalLogic .. 19

7.3 Home/PropositionalLogic/Proof .. 19

7.4 Home/PropositionalLogic/Proof/Solution ... 20

7.5 Home/BinaryRelations ... 21

7.6 Home/BinaryRelations/Solution .. 21

 1

CHAPTER 1

INTRODUCTION

1.1 Vision

The vision is to research and apply Knowledge Representation and Inference

methods in Artificial Intelligence in order to design an intelligent educational web

application that assists students in studying Discrete Structures. Through this project, the

group aims to make scientific contributions about Knowledge Representation Methods.

1.2 Mission

The mission by the end of the project is to allow students to search for knowledge

(search by the name of a specific definition, theory, or formula; search by a keyword or

topic for relevant knowledge). Students can see a step-by-step solution for basic Discrete

Structures problems. The intelligent problem solver lets the students define a problem

(inputs with question) in a structured query. Given a defined problem, the system can

provide students with approaches and step-by-step solutions. Overall, it will assist students

in solving some harder discrete structures problems.

1.3 Background

Up to now, there have been few education sites that assist students with their

academic studies such as Chegg, Khan Academy, Wolfram Alpha, and so on. However, all

of them still have a limitation, they have real tutors supporting the students whenever they

have a random question which is not listed in any solution manual. Inevitably, this reality

causes some disadvantages:

 2

• Increase in demand for tutors.

• Difficulty validating the tutor’s experience.

• Difficulty updating new knowledge with all that many tutors.

In order to reduce the number of online supports for students, there are two ways currently

applied in business:

• Introducing step-by-step solutions for predefined academic problems.

• Applying fees for real tutor support.

Keeping this in mind, there exists an increasing need for a system that can automatically

assist the student without real tutors’ expertise. This situation motivates an application that

is capable of:

• Allowing the students to type in the prompt of a problem using a query language.

• Generating a step-by-step solution for the problem without human intervention.

1.4 Related Work

There have been few applications that provide step-by-step solutions for academic

problems. Some Problem-Solving Engine service providers are Wolfram Alpha,

QuickMath, CyMath, and so on. Until now, these Problem-Solving Engines only cover a

limited amount of basic math contents such as functions, integration, etc. and are not

capable of solving complex math problems or problems in other fields such as Chemistry,

Physics, etc. The following are examples of the basic Problem-Solving Engines:

• Wolfram Alpha: http://www.wolframalpha.com/examples/pro-features/step-by-

step-solutions/stepby-step-discrete-mathematics/

• CyMath: https://www.cymath.com/

• QuickMath: https://quickmath.com/webMathematica3/quickmath/equations/solve

 3

In terms of research papers, there have been a few researches in Intelligent Problem

Solvers in Education (IPSE). One of them has been published in the following chapter:

Nhon Van Do (March 2nd, 2012). Intelligent Problem Solvers in Education: Design Method

and Applications, Intelligent Systems Vladimir Mikhailovich Koleshko, IntechOpen, DOI:

10.5772/37115, which is available from: https://www.intechopen.com/books/intelligent-

systems/intelligent-problem-solversin-education-design-method-and-applications

This chapter has demonstrated the design process of an IPSE using the Ontology of

The Computational Object Knowledge Base model (COKB) discovered by Nhon Van Do.

However, there have not been any major web or mobile applications that apply this new

knowledge model. Therefore, the team aims to create an application to solve Discrete

Structures problems using the COKB model.

1.5 Approach

The team used Agile software development methodology as shown in Figure 1.1

for our project. The tasks that need to be accomplished were specified in the initial sprint

meeting. Following the sprint meeting, the team members work on designing, developing,

testing, and deploying the component that was decided in the sprint meeting. At the end of

the sprint the team released the newly built component. This same process was repeated all

over again for every component of the project.

Figure 1.1: Agile Software Development Methodology

 4

CHAPTER 2

REQUIREMENTS

The requirements stage involved the group members getting together and

discussing the project to get a sense of what path the project should take. Our senior project

mentor’s opinion was helpful during this process.

2.1 Customer Requirements

This section contains requirements generated from discussion among the team

members. These requirements are highly critical and are the indication of the functionality

that the user accepts. None of these requirements shall be changed without mutual

agreements among the team members.

 2.1.1 Web Based GUI

The product shall have a Graphical User Interface for Users to interact with the

display. The GUI will allow user to input Discrete Structure problem as text or upload

picture of the problem. After the engine solves the problem, the user shall be able to view

the step-by-step solution on the webpage.

Priority – Critical

2.1.2 Input Field for Problem

The product’s GUI shall have an Input Field for the user to define a problem. The

input field shall take input in plain text or shall take the uploaded picture of the problem as

an input. Nonetheless, all the input problem must be related to Discrete Structure,

otherwise, the input shall be invalid.

 5

Priority – Critical

2.1.3 Solution Delivery to the User

The product shall deliver a step-by-step solution to the user defined valid Discrete

Structure problem. The solution will be structured in the manner of Step 1, Step 2, Step 3,

and so on.

Priority – Critical

2.1.4 Step Elaboration

The product shall allow a user to click a step on displayed solution, which will than

cause the engine to retrieve information/topics/knowledge related to that step of solution

and present it to the user. This further elaboration is aimed to allow the user to better

understand as to how the problem is solved.

Priority – High

2.2 Packaging Requirements

Packaging requirements are those requirements that identify how the delivered

product will be packaged for delivery to the end-user. In other words, it defines how the

final product will "look" when finished and delivered. This product will be packaged into

a web app also known as a website that users will be able to access through a web browser.

No download will be necessary.

2.2.1 Web Application Requirements

There must be a web app hosted on some web server that the user can access

through his/her web browser.

Priority – High

 6

2.2.2 Web Server Requirements

There must be a web server that the web app can be hosted on so that users can

access the website on the Internet.

Priority – High

2.3 Performance Requirements

The Performance of the project is measured by how robust the program is. It is also

determined by the number of complex discrete structures problems that are successfully

solved.

2.3.1 Processing

The software should take in the user input, process the information provided by the

user and successfully give the step-by-step solution to every problem.

Priority – Critical

2.4 Maintenance and Support Requirements

2.4.1 Web Server Maintainability Requirement

Web server must be maintained and monitored daily to ensure the website is online.

Unexpected crashes may occur, either because of issues with the web app itself, or the

server host provider. Having the web server be monitored increases stability of the web site

and ensures live access at any time for users.

Priority – High

2.4.2 Problem Expansion Requirement

Types of problem that can be solved through this web app should be expanded to

user’s needs over time. This will help keep a constant flow of users for the website.

Priority – Critical

 7

CHAPTER 3

FEATURES AND FUNCTIONS

Based on the requirements that the team came up with, we decided that the web

application should have the following features and functions:

• The user shall be able to submit problems and view solution.

• The user shall only define a problem related to Discrete Mathematics.

• Any input problems not related to Discrete Mathematics will be deemed invalid by

the system.

• The user shall either define problem on the input field in the form of text or upload

a clear picture of the problem.

• After receiving a valid input, the system shall compute and provide a detailed step-

by- step solution to the user.

• All the steps shall be numbered using alpha-numeric texts, for e.g. Step 1, Step 2

and so on.

• If the user wishes, he/she can click on a step number and the system should retrieve

specific knowledge/ topic related to that step and present it to the user as extended

elaboration.

.

 8

CHAPTER 4

ARCHITECTURAL DESIGN

Figure 4.1 is the overall structure of our system. As shown below, the system will

have four components, each with specific set of functions and interaction with the other

components. The dataflow and interactions among the components can be seen below,

which will later be defined in detail. The User and the Knowledge-Engineer are not a

component of the system but rather actors of the system.

Figure 4.1: Basic Design of the System

4.1 Interface

It is the primary point of contact between the IPS (Intelligent Problem Solver) and

the user. This component controls the GUI that is responsible for getting the problem

specification (input) from the user, sending it to the server (Inference Engine / Explanation

9

Component) and displaying the result back from the server (Inference Engine/ Explanation

component) in a step-by-step solution.

4.2 Knowledge Base

This component is in-charge for storing the knowledge (Classes, Functions

Concepts, Rules, Operators, etc.) in structured files that the system can retrieve and

process. It is the core component of the system that provides the information necessary for

the Inference Engine to solve the user input problem using an established theory or

theorem.

4.3 Inference Engine

This component can be considered as the brain of the system. It is where the forward

chaining algorithm is implemented to generate new facts from the knowledge base starting

with the known facts and inference rules. Specification from the user is sent to the Inference

Engine which then consults with the Knowledge Base and implements forward chaining to

generate the output. The output is then tunneled to the Explanation Component.

4.4 Explanation Component

End User expects a step-by-step solution rather than a single line of result. Thus,

the raw output from the Inference Engine is sent to the Explanation Component, where the

Explanation engine makes sense of how the problem was solved in a stepwise manner. It

also formats each step in human readable form and sends it to the Interface Component to

display to the user.

10

CHAPTER 5

DETAILED DESIGN

The following is the detailed design of our system. The lines show the interaction

between the systems and subsystems. The numbering alongside the lines shows the order

in which these interactions takes place.

Figure 5.1: Detailed Design of the System

5.1 Inference Engine Layer

5.1.1 Inference Algorithm Subsystem

 The inference engine system is based on algorithms and storing the results. This

subsystem of Inference Layer basically uses a modification of forward chaining algorithm

11

to calculate the final result of the user provided problem with the help of the knowledge

base.

5.1.1.1 Subsystem Software Dependencies

 This subsystem is using the Wolfram lab API for the algorithm. The way it works

is that the algorithm is written on Wolfram’s servers by the team. An API call is made in

the web application to access the written algorithm. The algorithm will run through a

sequence of steps and when it finds the solution returns the solution.

5.1.1.2 Subsystem Programming Languages

The program language used for this subsystem is Wolfram’s programming

language.

5.1.1.3 Subsystem Data Processing

 The algorithm that the team developed is based on the forward chaining algorithm

used heavily in Artificial Intelligence (AI) based fields. It processes the problems and

comes up with the intermediate results and eventually the final result.

5.1.2 Working Memory Subsystem

 This subsystem of the Inference Layer basically stores the intermediate results.

5.1.2.1 Subsystem Software Dependencies

 This subsystem uses Google’s Firebase, a powerful document-based database to

store data and be able to retrieve it quickly and efficiently.

5.1.2.2 Subsystem Programming Languages

Although we are using a database, this database is a noSQL database. Therefore,

SQL is not being used as a language. The data is accessed or queried, through JavaScript.

12

5.1.2.3 Subsystem Data Structures

 The data structures being used are document based, unlike the typical relational

model used in most SQL databases. Since Firebase is a document-based database, it does

not use any kind of relational model. The document-based model is similar to JSON, so all

the data structures utilized in Firebase will follow the JSON format.

5.1.2.4 Subsystem Data Processing

 The only data processing that takes place in this subsystem is taking the steps that

are generated and storing them in the actual database. The data is not analyzed and

processed at an extreme level, but it is looked at and retrieved frequently.

5.2 Explanation Layer

5.2.1 Full Solution Window and Step Processor Subsystem

 The full solution is the entire solution to the user’s problem. While, the full solution

just stores the whole solution, the step processor links to the full solution and divides it into

steps. In other words, the step processor divides the whole solution so that it makes sense

to the user.

5.2.1.1 Subsystem Software Dependencies

 This subsystem uses Wolfram lab API, a powerful mathematical processor to be

able to retrieve and compute the solutions quickly and efficiently.

5.2.1.2 Subsystem Programming Languages

 This processor uses the Wolfram Alpha programming language. The way the data

is accessed or queried, is through JavaScript.

13

5.2.1.3 Subsystem Data Structures

 The document-based model for each solution is JSON, so all the data structures

queried from the Wolfram API will follow the JSON format.

5.2.1.4 Subsystem Data Processing

 The only data processing that could be considered as data processing is taking the

intermediate steps that we generate from the wolfram API and storing it.

5.3 Interface Layer

5.3.1 Image Recognizer Subsystem

 This subsystem takes a picture uploaded by the user and identifies the text within

that picture. The text will be letters and symbols that make up discrete mathematics/logic.

5.3.1.1 Subsystem Software Dependencies

 Latex viewer which recognizes latex and a Mathpix API which helps with text

recognition (in the picture uploaded by the user) is used.

5.3.1.2 Subsystem Programming Languages

 JavaScript is used to make calls to the APIs

5.3.1.3 Subsystem Data Structures

 The results from the API calls are returned as JSON objects. As a key-value pair,

each property of the data can be viewed and checked to see what the text was and if the

recognition worked properly.

5.3.1.4 Subsystem Data Processing

 The images need to be processed to Latex.

14

5.3.2 Problem Identifier Subsystem

 The Problem Identifier is the subsystem that has the power to recognize what the

actual problem is from the user provided text (from an image or from the user’s keyboard

entry). More specifically, it will recognize the problem (the discrete math problem the user

wants to solve) and separates the hypothesis and goal. It also makes sure the input is in the

correct format.

 5.3.2.1 Subsystem Programming Languages

 JavaScript is used to put together the user input to verify if the user input is a

problem. In addition, JavaScript is also used to check if the problem is solvable and in the

correct format.

 5.3.2.2 Subsystem Data Structures

 JSON is an object format for the data structures used in this subcomponent.

 5.5.6 Subsystem Data Processing

Data processing is heavily used in this subsystem. The results from the Image Text

recognizer or the user keyboard input is translated into a format usable by our backend

program.

5.3.3 Controller Subsystem

 The Controller sub-component of the Interface will assist in control of the Interface

and allow user’s input to reach the backend.

 5.3.3.1 Subsystem Programming Languages

 JavaScript is used to oversee the other two subcomponents (Problem identifier

subsystem and Image Text Recognizer Subsystem).

15

5.4 Knowledge Base Layer

5.4.1 Knowledge Domain Subsystem

 The Knowledge Base stores all the inference rules of all the knowledge domains in

Discrete Structures. We can utilize these rules stored whenever a problem is given, instead

of calculating it for each individual problem. This makes the application much quicker as

it is simply accessing rules and applying them rather than starting all the way from scratch.

 5.4.1.1 Subsystem Software Dependencies

 The dependencies include Google’s Firebase, and Wolfram.

 5.4.1.2 Subsystem Data Structures

 Document based data. For example, in JSON, there are key-value pairs, which is

how the data is arranged in this database. When retrieving results, they can be saved as

JSON objects which can be parsed out easily. JSON format is preferred as it is standard for

transferring data and very compatible with the application.

 5.4.1.3 Subsystem Data Processing

 Data processing will include the processing of the results that the database (or the

API call to the database) returns. As the format is expected to be JSON, the processing will

mostly comprise of recognizing key value pairs and saving them to the corresponding

variables. The data stored in the variables is then used by the Inference Engine to determine

the next step to get to the solution.

16

CHAPTER 6

SYSTEM INNER WORKING

The team will be using Wolfram Programming lab for our backend where we will

be storing the algorithm to solve the discrete mathematics problems. It also stores all the

knowledge base and the steps that are to be taken to solve the problem. The algorithm being

deployed to solve the discrete mathematics problem is a modified form of a forward-

chaining algorithm. The algorithm searches for a rule in the knowledge base considering

the facts provided by the user. If there is some sort of rule present that simplifies the

problem, the rule is applied, and the result is stored in the solution steps. Storing the steps

makes sure that the algorithm can avoid any steps that initiate a loop during the problem-

solving. A rule when applied resulting in one of the solutions already present in previous

steps means that there is a possibility of a loop. Therefore, the algorithm avoids such pitfalls

and makes sure there are no infinite loops that deter the algorithm from solving the

problem. If the algorithm does not find any rule that can be applied further to get to the

final goal, the system displays could not solve the problem message. If the algorithm

reaches the final goal while applying the rules, the final step is stored by the explanation

component and then the step-by-step solution is displayed to the user.

 The front-end will be made using React and open source material-UI framework.

An application program interface (API) will be used to connect the backend with the

frontend. The problem that the user types will be put in proper format by the front and sent

17

to the backend to be processed. The step by step solution is then returned which is displayed

to the user

18

CHAPTER 7

WEB APPLICATION FRONT-END

Since the author worked more on the front-end, the following is the description as

to how the web application can be used by the user. Figure 7.1 is the current home page of

the system. The user can type in the problem in the text box or select the Propositional

Logic or the Binary Relations button.

Figure 7.1: Home Page of the Web Application

Once the user selects the Propositional Logic, the user views the page shown in

Figure 7.2

19

Figure 7.2: Home/PropositionalLogic

The user currently has an option of selecting the proof option for solving

propositional logic. Currently, the web application only supports proof problems for

propositional logic. In the future, the team plans to work on adding more type of problems.

Once the user selects proof, the user views the page shown in Figure 7.3. The user can see

few sample problems which the user can select to solve or type in their own problem.

Figure 7.3: Home/PropositionalLogic/Proof

20

 If the user selects any of the sample problems, the problem input textbox is filled

with the sample problem. On the other hand, the user can ignore the sample problems and

type in his own problem. Once the problem is typed in the textbox and the user presses the

submit button, the user sees the step-by-step solution as shown in Figure 7.4. The user can

also press the “Explain” button which opens the dictionary side drawer.

Figure 7.4: Home/PropositionalLogic/Proof/Solution

 If the user selects Binary Relations instead of Propositional Logic in Figure 7.1, the

user views the page shown in Figure 7.5. Currently for Binary relations, the web application

can figure out the properties of a binary relations (Is the relation Reflexive, Symmetric,

Antisymmetric or Transitive). Again, here the user has an option to either type in their own

problem or select one of the sample problems to solve.

21

Figure 7.5: Home/BinaryRelations

 Once the user enters the binary relation and presses submit the user views the

solution in the format shown in Figure 7.6. The user can press explain to see the dictionary

definitions of the topics/rules the algorithm used to solve the problem. Note: The user can

search any topic in the dictionary whenever the user wants to.

Figure 7.6: Home/BinaryRelations/Solution

22

CHAPTER 8

CONCLUSION

The system components efficiently interact internally with each other to find the

solution for the user provided question. The most important component of the system, the

Inference Engine, is successful in figuring out the answer to the user provided Discrete

Structures problems. It also works seamlessly with the front-end to display the step-by-step

solution to the user in a beautiful and interactive manner. Overall, our system fulfills our

vision to design an intelligent educational web application that assists students in studying

Discrete Structures.

23

REFERENCES

Ben-Arieh, D., & Moodie, C. L. (1987). Knowledge based routing and sequencing for

discrete part production. Journal of Manufacturing Systems, 6(4), 287-297

Liu, S., and Bobrow, J. E., “An Analysis of a Pneumatic Servo System and Its

Application to a Computer-Controlled Robot,” ASME Journal of Dynamic

Systems, Measurement, and Control, 1988, Vol 110 pp 228-235.

Nhon Van Do (March 2nd, 2012). Intelligent Problem Solvers in Education: Design

Method and Applications, Intelligent Systems Vladimir Mikhailovich Koleshko,

IntechOpen, DOI: 10.5772/37115. Available from:

https://www.intechopen.com/books/intelligent-systems/intelligent-problem-

solversin-education-design-method-and-applications

Zeigler, B. P. (1987). Hierarchical, modular discrete-event modelling in an object-

oriented environment. Simulation, 49(5), 219-230.

24

BIOGRAPHICAL INFORMATION

Mohammed Ali was an international student at the University of Texas Arlington

(UTA). He enrolled in UTA in Fall 2015 where he pursued an Honors Bachelor of Science

in Software Engineering. After graduating in the Spring 2019, he will focus on doing his

graduate degree in Computer Science with a focus in software security. During his time as

an undergraduate student at UTA, he was extensively involved in research projects. He

plans to continue being involved in research projects during his graduate studies.

	INTELLIGENT PROBLEM SOLVER FOR DISCRETE STRUCTURES
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Vision
	1.4 Related Work
	1.5 Approach
	2.1 Customer Requirements
	2.2 Packaging Requirements
	2.3 Performance Requirements
	2.4 Maintenance and Support Requirements

