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ABSTRACT 

 

AN EXPLAINABLE ARTIFICIAL INTELLIGENCE  

APPROACH TO CONVOLUTIONAL NEURAL 

NETWORK OPTIMIZATION 

AND UNDERSTANDING 

Nicholas Laudermilk, B.S. Biomedical Engineering 

 

The University of Texas at Arlington, 2022 

 

Faculty Mentor:  Juhyun Lee 

Advancements in artificial intelligence (AI) show promise for the technology’s use 

in widespread biomedical applications. As these models grow more complex, 

understanding how they work becomes increasingly more difficult. To use these systems 

in the healthcare setting, it is imperative to reduce model ambiguity and increase user trust 

in their decision-making. Explainable AI (XAI) techniques were used to optimize the 

development of a super-resolution convolutional neural network (SRCNN). Image 

augmentation was performed on the training data, and k-fold cross-validation was used to 

obtain more reliable metrics. Activation maps were used to show the output of each 

convolutional layer, and the final neural network (NN) weights were visualized. Using 

these techniques, the model was shown to focus primarily on the circular lenslet patterns 

of input LFM images, with the center of images being the main focus of the model. The  
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final trained model was able to outperform bicubic interpolation in PSNR by 27% and 

SSIM by 7%.
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

Over recent years, the interest in usage of artificial intelligence (AI) for biological 

and medical research has skyrocketed, due to their ability to produce highly accurate results 

for almost any use case. One of the biggest issues with these NNs however, is what is 

known as a black box model. This occurs when there is a lack of understanding of how and 

why a model works, leaving the reasoning behind the results generated by said networks 

unclear. This project aims to address this issue, by applying Explainable Artificial 

Intelligence (XAI) techniques to the training and testing of a super-resolution convolutional 

neural network (SRCNN) for light field microscopy (LFM) image 

upscaling/deconvolution. 

1.1.1 Project Aim 

The work of this project is an addition to the aim of one of the bioengineering 

senior design projects: to create a NN capable of taking an input raw 2D LFM image and 

outputting an upscaled deconvoluted 3D image. The final design consists of two separate 

NNs, one for upscaling the 2D raw LFM image, and another for converting this upscaled 

image into a 3D deconvoluted LFM image. As the 3D deconvolution NN was a late 

addition to the original senior design project, analysis of its structure was not able to be 

completed. Due to this, this project focused on the upscaling portion of this NN and can be 

divided into three main sections: training, testing, and analysis of the upscaling NN portion 
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of the final design. To do this, XAI techniques will be implemented at all stages of its 

development, as well as after the completion of the design, which will be discussed in a 

later section in more detail. 

1.1.2 Light Field Microscopy 

Light Field Microscopy is a 3D imaging technique in which spatial resolution is 

sacrificed to capture angular resolution. To achieve this, a microlens array is inserted into 

the intermediate image plane of a normal optical microscope and a sensor placed at the 

back focal plane of the microlens array. This allows the sensor to capture multiple discrete 

ray angles and produces raw LFM images which consist of a lattice of small circles as 

shown below.  

 

Figure 1.1: Example of raw 2D LFM image 

After they are captured, these images are processed by postprocessing software, 

and produce a focal stack of images, which may be displayed as a final 3D image. The 

drawback with this technique is that some spatial resolution must be given up in order to 

capture the angular views, which results in a much lower resolution final image (Broxton 

& Grosenick, 2013). This issue aimed to be solved by the development of the NN. 
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1.2 Artificial Intelligence in the Healthcare Setting 

Given the increase in the complexity and amount of data in healthcare, AI is sure 

to see an increasing number of applications within the field. In fact, we can already see 

some of its use cases, in places like diagnosis and treatment recommendations (Ahmed & 

Zubair, 2022). Even though a number of studies have shown that these AI can perform as 

well as or better than humans at these key tasks, their adoption has been slow and on a 

small scale, but why is this the case? It is perhaps the most difficult issue to address that 

has put the biggest halt on their adoption, that being their transparency. Many deep learning 

algorithms and models, particularly those performing image analysis, are almost 

impossible to interpret or explain, and function as a black box system (Shrivastava & 

Kumar, 2022). When a serious diagnosis is given, it is understandable that a patient would 

likely want to know why, and these algorithms and even the physicians using them may 

not be able to provide one. Additionally, there is the ethical dilemma of what should be 

done in the case of an AI system making a mistake (“Artificial Intelligence in medical 

science”, 2014). There is no clearly established accountability for these systems, and the 

liability of their decisions is not an easy thing to delegate. Additionally, these systems can 

be subject to algorithmic biases, possibly making predictions more likely based on factors 

that may not actually be causal factors, like gender or race. The question then becomes, 

how can we address these issues with NNs in order to increase their usage and ensure a fair 

final model? One such solution is by implementing XAI tools and techniques to develop 

and understand these systems. 
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1.3 Explainable Artificial Intelligence 

XAI is a set of techniques and methods that allow for humans to both understand 

and trust the output of various machine learning models. These techniques may be applied 

to characterize the accuracy, fairness, and transparency of a NN. It is also one of the best 

tools for building trust and confidence when using these models in any setting (Barredo 

Arrieta, et al., 2020). As AI becomes more advanced, it becomes an increasing challenge 

to retrace how an algorithm may have arrived at a result. The model may become a black 

box, and be almost impossible to interpret, even for the data scientists or engineers who 

created the system in the first place. Implementing XAI techniques into the development 

of these models gives them a level of explainability that can help ensure they are working 

as intended. The broad adoption of these systems depends on the ability of humans to trust 

the output of these AI algorithms, which is based on the level of understanding we have of 

how it functions, as well as its safety and reliability. These factors make XAI crucial in 

achieving more robust and fair models, as well as ensuring they do not cause harm. 

1.3.1 XAI Techniques 

 When using XAI to achieve interpretability, there exists two main techniques for 

creating interpretable models. The first method is creating a transparent machine learning 

model, that being a model which can be understood based on its structure alone without 

other techniques. The second method is applying post hoc analysis on a black box model 

to explain the complex behavior. Though the NN structure optimized in this project was 

created initially as a transparent model, it was optimized to a less understandable final state. 

As such, this project employed primarily post hoc techniques to analyze the final trained 

NN. Because of the structure of our NN, only some of these techniques may be employed. 
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Many XAI methods are created for NN structures aimed for classification. As our NN 

produces an upscaled image, these techniques are not always able to be applied to our 

model. Due to these factors, the main post hoc technique employed was feature 

visualization, specifically using feature maps and filter visualization. 

 Because convolutional neural networks (CNNs) are designed to work with image 

data, their structure and function are less transparent than other types of NNs. These models 

are composed of small linear filters as well as the result of applying said filters to an input, 

called a feature map. We can visualize both of these to provide insight as to how a model 

works. In the case of the NN filters, we may do so by retrieving and normalizing the learned 

weights from our final model’s convolutional layers. These may then be represented 

visually, with higher weights indicating a higher focus on that portion of the input. As for 

feature maps, we may select an input image and pass it through our network. By taking the 

output of each convolutional layer, we can see the filters applied to our input image, giving 

us an indication of what features the network picks up on in each layer (Brownlee, 2019). 

Using these two techniques, we can produce a visualization of the inner functionality of 

our NN and gain a better understanding of how it produces its final output. 

Additionally, we can apply XAI techniques to generate a more balanced dataset. In 

this project, the two main ways this was accomplished was via image augmentation within 

Keras, a deep learning API for the TensorFlow library, and k-fold cross-validation during 

validation. Image augmentation is a method that allows for the expansion of the size of a 

dataset by applying transformations to the original dataset. These transformations include 

rotations, shifts, flips, and zoom. Applying these adds a level of variation that allows our 

final model to generalize better when encountering unseen data, making it more robust 
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overall. K-fold cross-validation is a procedure used the better measure of the metrics of a 

machine learning model. This procedure has a single parameter named k, referring to the 

number of groups a set of data will be split into. Generally, k-fold cross-validation works 

as follows. First, the dataset is shuffled randomly and split into a set of k equal groups. For 

each unique group, the group is taken out to be used as a test dataset. The remaining groups 

are then used to train and fit the model. After this, the testing data is used to measure the 

evaluation scores, which are stored. This is repeated for each unique group. After all k 

groups have been evaluated in this manner, the evaluated metrics are averaged to obtain a 

final summarized metric set for the model. By doing this, we generate metrics with low 

bias, and can better see the skill level of our model.
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CHAPTER 2 

METHODOLOGY 

2.1 Neural Network Training 

In this section, the methodology for the training of the SRCNN is detailed. Training 

was performed on multiple models then analyzed to determine the optimal structure. This 

was performed in Python using the Keras and TensorFlow libraries in two main steps, 

model optimization and final model training.  

2.1.1 Model Optimization 

During the model optimization process, multiple CNNs were trained with varying 

structures using the BSDS500 dataset, a collection of 500 images for image segmentation 

and benchmarking, with 300 of the images used for the training of the models. Image 

augmentation of the training dataset was performed using the ImageDataGenerator class 

within Keras, with a rotation range of 20 degrees, a width and height shift range of 10%, a 

shear range of 20 degrees, and a zoom range of 10%. This was used to preprocess the 

training data and produce 900 unique images for training from the original set. These 

images were saved to a separate directory to be loaded when training the model. 

The process for training the models themselves consists of the following steps. 

First, the augmented images were loaded and converted into grayscale, then converted to a 

numpy array and normalized. The normalized images were then converted into two 

separate dataset arrays, a ground truth and low-resolution dataset. The ground truth dataset 

images were cropped to a 256x256 pixel region, then added to the ground truth array. For 
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the low-resolution dataset, the images were cropped to half that size, 128x128 pixels, and 

added to a low-resolution array. For compiling and training the NN model itself, the 

pixelwise mean square error between the images was used as a loss function, with the Adam 

optimizer, and a learning rate of 0.001. The low-resolution images were then passed 

through the NN model, producing an output image 2x in resolution, which was compared 

to the ground truth image. This was then run for 400 epochs with k-fold cross-validation 

using a k value of 10. The average PSNR and SSIM between the ground truth and upscaled 

images were calculated for each fold, then averaged overall to produce the final metrics for 

each model. These low-resolution images were then upscaled via bicubic interpolation, and 

the same metrics measured, then compared to those from the trained models. This process 

was repeated for each of the tested models, which had their structures iterated on to produce 

better metrics. The model with the highest metrics was then chosen as the final structure 

and trained according to the following section. Additionally, each model and trained 

weights was saved for later testing. 

2.1.2 Final Model Training 

Once the model’s structure had been optimized using the previously mentioned 

technique, it was trained using simulated raw 2D LFM images from the VCD-Net dataset, 

containing over 2300 image. Training the final model was almost identical to the 

optimization procedure mentioned in the previous section. First, the raw 2D LFM images 

were augmented using Keras’ ImageDataGenerator, with a rotation range of 20 degrees, a 

width and height shift range of 10%, a shear range of 10 degrees, and a zoom range of 10%. 

This produced around 5000 images to be used in the training of the model. These images 

were loaded and converted into grayscale, then converted to a numpy array and normalized. 
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The normalized images were then converted into two separate dataset arrays, a ground truth 

and low-resolution dataset. The ground truth dataset images were unaltered 176x176 pixel 

images and added to the ground truth array. For the low-resolution dataset, the images were 

cropped to half that size, 88x88 pixels, and added to a low-resolution array. Again, the 

pixelwise mean square error between the images was used as a loss function, with the Adam 

optimizer, and a learning rate of 0.0001. The low-resolution images were then passed 

through the NN model, producing an output image 2x in resolution, which was compared 

to the ground truth image. This was then run for 2500 epochs with k-fold cross-validation 

using a k value of 10. The average PSNR and SSIM between the ground truth and upscaled 

images were calculated for each fold, then averaged overall to produce the final metrics for 

each model. These low-resolution images were then upscaled via bicubic interpolation, and 

the same metrics measured, then compared to those from the trained models to have an 

idea of the overall performance of the model. Following this, the model and trained weights 

were saved and validated to determine the model’s performance on unseen data. 

2.2 Neural Network Testing 

In this section, the methodology for the testing/validation of our SRCNN is 

detailed. Though performance metrics were measured during training, in order to ensure 

the model was robust, they were remeasured using a novel set of images not used during 

training. The following metrics were measured to characterize the performance of each 

model: PSNR, SSIM, pixelwise mean square error (loss), training time per epoch, and 

computational time. The PSNR, SSIM, and pixelwise mean square error were measured 

during the training and testing of the models, while the training time per epoch was 

measured during training and the computational time during testing. 
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2.2.1 Testing Methodology 

The testing of each model was done similarly to the method used during training, 

with the main difference being the usage of novel data unseen during training. While 

initially optimizing the model structure, 200 unaltered images from the BSDS500 dataset 

were used for validation, while the training of the final model used 200 unaltered images 

from the VCD-Net dataset. These images were loaded and converted to grayscale and then 

into a numpy array and normalized. After this, they were separated into a ground truth and 

low-resolution dataset. In the optimization phase, the ground truth array represented a 

256x256 cropped region of the image, while in the final model, the ground truth array 

consisted of unaltered raw 2D LFM images. In both phases, the low-resolution array was 

a copy of the same images at half the resolution. The low-resolution images were then 

upscaled via the NN and bicubic interpolation, and the PSNR, SSIM, pixelwise mean 

square error, and computational time measured for each. Additionally, the training time per 

epoch was measured while training the models and added to these results. These metrics 

were then compared between bicubic interpolation and each NN structure and used to 

optimize the model structure as shown in the next section. 

2.2.2 Model Structure Optimization 

To optimize the initial structure of the SRCNN, the measured metrics were used to 

determine which structure performed best. As the goal of the final model was to produce a 

high resolution upscaled image, visual quality of the output image was the main 

consideration in determining this. Comparing PSNR, SSIM, and pixelwise mean square 

error between each structure helped in initially determining the best models, however these 

metrics do not provide a full representation of visual quality of an image. Because of this, 
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additional tests were performed to determine the model which produced images with the 

highest visual quality. To assess this, a poll was conducted with 10 participants, each 

ranking the visual quality of 6 images upscaled via 4 different model structures and bicubic 

interpolation. Participants were asked to rank the 5 images within each set from highest to 

lowest visual quality. This data was additionally used in consideration with the measured 

metrics to determine the best final model structure. The same poll was conducted on the 

final trained model as well, where the participants were asked to rank 4 images in terms of 

visual quality, the ground truth image, low-resolution input image, NN upscaled image, 

and bicubic interpolation upscaled image. 
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CHAPTER 3 

RESULTS AND ANALYSIS 

This section contains the results from the training, testing, and analysis of the 

SRCNN for raw 2D LFM image upscaling. 

3.1 Model Optimization 

When optimizing the NN, 4 separate structures were tested and compared to bicubic 

interpolation to determine the overall best model. Visual quality was also assessed via a 

user poll. Though average computational time was measured, the results were negligible 

between each model, and as such are not included in the tables shown below.  

Table 3.1: Average metrics of BSDS500 dataset trained models 
 

Model Name 10 Layer CNN 5 Layer CNN 3 Layer CNN U-Net Bicubic 
PSNR (dB) 33.40 32.31 32.38 28.94 31.70 

SSIM 0.937 0.926 0.931 0.921 0.921 
Avg Epoch 

Training Time (s) 20.96 15.88 5.93 18.98 
 

NA 

 

Table 3.2: Results of model optimization visual quality poll 
 

Model Name 10 Layer CNN 5 Layer CNN 3 Layer CNN U-Net Bicubic 
% 1st Place 
Rankings 56.00% 12.67% 9.67% 21.67% 0.00% 

% 2nd Place 
Rankings 27.67% 25.00% 12.00% 34.00% 1.33% 

% 3rd Place 
Rankings 11.67% 34.33% 27.67% 23.00% 3.33% 

% 4th Place 
Rankings 4.67% 24.00% 50.67% 14.33% 6.33% 

% 5th Place 
Rankings 0.00% 4.00% 0.00% 7.00% 89.00% 
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From the previous tables, we can see that all of our models outperformed bicubic 

interpolation except for our U-Net structure in PSNR and SSIM. For visual quality, all of 

our models outperformed bicubic interpolation, with it consistently being ranked last. From 

the tested structures, the 10-layer CNN gave the best results, so this structure was chosen 

to be used for the final model. Additionally, the visual quality tests show that increased 

model complexity showed an improvement in perceived visual quality, though at the cost 

of increased training time, and a less transparent model, as discussed in earlier sections. 

3.2 Final Trained Model 

3.2.1 Final Model Structure 

After optimizing the best model from the previous section, the final SRCNN model 

structure was tweaked to the following structure. 

 

Figure 3.1: Final NN Structure Diagram 

 

3.2.2 Measured Metrics 

When training the final model, the same metrics were recorded, with the difference 

being the size and type of the training data. Using the methods mention in previous 

sections, the following metrics were measure after training.  
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Table 3.3: Average metrics of VCD-Net dataset trained models 
 

Upscaling 
Method PSNR (dB) SSIM Avg Epoch 

Training Time (s) 

Average 
Computational 

Time (s) 
Final NN 

model 49.22 0.992 20.96 0.7 

Bicubic 
Interpolation 38.67 0.928 NA NA 

 
Table 3.4: Results of final model visual quality poll 

 
Upscaling 
Method 

% 1st Place 
Rankings 

% 2nd Place 
Rankings 

% 3rd Place 
Rankings 

% 4th Place 
Rankings 

Ground truth 
Image 96.88% 3.13% 0.00% 0.00% 

Low-resolution 
input image 0.00% 0.00% 12.25% 87.25% 

NN Upscaled 
image 1.56% 93.38% 3.13% 1.56% 

Bicubic 
Upscaled 

Image 
1.56% 3.13% 84.38% 10.94% 

 

From the results above, we can see our final model outperformed bicubic 

interpolation by 27% in PSNR and 7% in SSIM. We also can see from the visual quality 

testing that our NN was ranked 2nd in terms of visual quality in over 90% of cases, only 

coming behind the ground truth image. 

3.3 Understanding the Model 

 During the optimization process, the network changed from a low to high 

complexity structure with low transparency. To gain a better understanding of why the 

model produces the outputs it does, this section will use the XAI visualization techniques 

mentioned previously to analyze the final model. To do this, an input image is passed 

through the model, producing an output image which may then be analyzed. The input and 

output images from the final model are shown below. 
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Figure 3.2: Input and output image from the trained NN model 

 

3.3.1 Feature Maps 

As mentioned in a previous section, the flow of an image through the final network can be 

analyzed using a feature map. By taking the output of the convolutional layers, the 

following results were obtained. 

 

Figure 3.3: Feature map of the model’s 2nd convolutional layer 

 

The image above represents the intermediate output of the NN at the 2nd 

convolutional layer within its structure. Each image shows the application of a filter on the 

input image, with 32 total filters. The image shows that the model produces many versions 

of the input with various features highlighted.  Because the input images lack color, the 

network is only able to pick up on a certain number of features. The network seems to 
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identify multiple structures, like the highlights within each lenslet, the dark surrounding 

area of the lenslets, and edges to name a few. This generally makes sense, and the feature 

map shows that the model seems to have learned the general structure of raw LFM images. 

Continuing looking at deeper layers, another pattern emerges. 

 
Figure 3.4: Feature map of the model’s 5th convolutional layer 

 

From this image, it can be seen that this layer shows much less detail than the 

previous layers and occurs right before the image is upscaled to the target resolution. 

Though the model still picks up on features important to the raw LFM image, like the 

lenslets, much less detail is shown. This is understandable, as the model is converting these 

features into much more abstract forms but removes the ability for humans to interpret 

these deeper map features. One of the most interesting facts about the network can be seen 

later in the network layers however, as shown below. 
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Figure 3.5: Feature map of the model’s sub-pixel and final convolutional layers 

 

The figure above shows the image at the sub-pixel convolutional layer on the left 

followed by at the final convolutional layer at the right. The sub-pixel convolutional layer, 

which upscales the input image to the target resolution, produces an image similar to the 

final output image, but with a noticeable grid pattern across the image. It would seem that 

the following convolutional layers would remove this and produce the final output, but 

instead the last convolutional layer seems to have very little information passed to the 

following layer, except for a few brighter specs. This seems to suggest that most of the 

information for the final upscaled image comes from the upsampling2D layer, which is 

added to the final convolutional layer to produce the final output image. From this, it seems 

that the rest of the NN’s structure only produces a small number of changes to add onto 

normal upsampling, which produce a higher quality final image. For the feature maps of 

all convolutional layers, see Appendix A. 
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3.3.2 Filter Visualization 

 By visualizing the learned filters of the model, the importance of each section of a 

layer may be shown. These filters represent the value of learned weights of the model and 

can give an idea of what portions of the input the model deems as important. 

 

Figure 3.5: Visualization of learned weights of the model’s 1st convolutional layer 

This figure shows a visualization of the normalized weights of the 1st convolutional 

layer of the final NN model, with each 3x3 square representing one filter in the layer. In 

the image, dark squares indicate a small or inhibitory weight, while light sections indicate 

a large or excitatory weight. Looking at this, there does not seem to be a set pattern when 

viewing the input image, however, the network seems to look towards the center of the 

image more often than the edges. Unfortunately, due to the increasing number of channels 

as the image passes through the network, it is unfeasible to show and analyze the filters for 

each of the remaining layers. This does seem to suggest, however, that the network 

prioritizes the center of the image.
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CHAPTER 4 

DISCUSSION 

In the development of the SRCNN, the initial model started very simple, but grew 

into an increasingly complex structure that gave higher metrics and increased the visual 

quality of the output upscaled images. In the development of the final model structure, 

however, it seems that the rationale behind the structure did not fully map to how the final 

model functions. When initially creating the model structure, the NN was divided into two 

sections, the upscaling half, consisting of the input-to-sub-pixel convolutional layers, and 

a quality enhancement half, consisting of the convolutional and addition layers after the 

sub-pixel convolutional layer. While initially intended to upscale the image, then use the 

following layers to improve the quality using residual connections, the model instead seems 

to extract important details from the sub-pixel convolutional layer and add those to the 

upsampling layer, producing a better-quality final image. Given the number of layers with 

feature visualizations showing little to no activation of filters, it seems possible that much 

of the convolutional layers do not contribute to the final output image, and the model could 

be simplified by increasing the number of filters, while decreasing the number of 

convolutional layers. Further testing could be done to see if a model structure with reduced 

dependance on the upsampling layer gives better or worse results than the current model.
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CHAPTER 5 

CONCLUSION 

In this project, a SRCNN was developed that upscales an input raw 2D LFM image 

by a factor of 2 times. XAI techniques were used during the training, testing, and analysis 

of the model. Image augmentation and K-fold cross-validation were used during the 

training of the model, ensuring the final product would be more robust, and produce better 

results on novel unseen data than a model which was not trained using these techniques. 

After an initial round of optimization of model structure, the network was trained on LFM 

images. This NN was able to outperform bicubic interpolation for PSNR and SSIM of 27% 

and 7% respectively. Additionally, polling was done, which showed the final model was 

ranked 2nd in visual quality compared to the ground truth, low resolution, and bicubic 

interpolated images, only falling behind to the ground truth image. Analysis of the final 

structure showed the model learned the structure of raw LFM images, focusing primarily 

on the lenslets within the images. The convolutional layers identified multiple structures in 

the image, including the background, lenslet highlights, and edges of the lenslets. A 

visualization of the input filters showed the model focused more on the center of the image, 

with a lower priority on the edges. Feature maps of the final layers in the model also showed 

the model seemed to isolate important features to add to the upsampled original input 

image, producing the final output image with increased image clarity. This implies the 

model may be able to be simplified, either by reduction in the number of convolutional 

layers and increasing the number of layer filters, or by removal of some convolutional  
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layers altogether. Further testing is required to see the level to which the final trained model 

depends on the upsampling layer, and what effect reducing its impact on the overall model 

would have on the final image quality.
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APPENDIX A 

FEATURE MAPS OF NEURAL NETWORK CONVOLUTIONAL LAYERS
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This appendix contains a collection of feature maps from each convolutional layer 

in the final trained NN model. It consists of the input image, followed by 5 sets of 

convolutional layers with 32 filters each. After this is the subpixel convolutional layer, with 

a filter size of 4, and then 3 convolutional layers with 32 filters again. Finally, the last 

convolutional layer is shown, which has a filter size of 1. 

 
Figure A.1: Input image passed through the final model 

 

Figure A.2: Feature map of the model’s 1st convolutional layer 

 

Figure A.3: Feature map of the model’s 2nd convolutional layer 
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Figure A.4: Feature map of the model’s 3rd convolutional layer  

 

 
Figure A.5: Feature map of the model’s 4th convolutional layer  

 

 
Figure A.6: Feature map of the model’s 5th convolutional layer  
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Figure A.7: Feature map of the model’s subpixel convolutional layer  

 

 
Figure A.8: Feature map of the model’s 6th convolutional layer  

 

 
Figure A.9: Feature map of the model’s 7th convolutional layer 

  

 
Figure A.10: Feature map of the model’s 8th convolutional layer  
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Figure A.11: Feature map of the model’s 9th convolutional layer  

 

 
 

Figure A.12: Feature map of the model’s 10th convolutional layer  
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APPENDIX B 

CONTRIBUTIONS BEYOND THE SCOPE OF THE SENIOR DESIGN PROJECT
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As mentioned before, this project is an addition to the work done for one of the 

bioengineering senior design projects over the past year. Though there is some overlap in 

what the projects entail, this appendix details the specific contributions added to this project 

that were not a part of the original senior design project.  For this project, the main focus 

was on the implementation of Explainable AI (XAI) processes/methods to ensure that the 

final model would be trustworthy and increase confidence that any end-user would have in 

the model. The model’s structure gradually increased in complexity as it was optimized 

this semester, which led to it becoming a black box model. As it would primarily be used 

in the research setting, transparency in the functionality of the model is key in allowing it 

to become a trusted tool for LFM image upscaling and deconvolution. Feature visualization 

through feature maps and filter visualization were the main XAI techniques used to show 

what features of LFM images the model focused on when producing the upscaled output. 

This analysis gave a better idea as to what decisions the network is making at each 

convolutional layer, which increased the transparency of the final model’s structure. The 

analysis also identified a potential limitation of the network, that being its reliance on the 

upsampling layer for most of the image data when producing its output. This showed that 

the final model could produce similar results with a much less complex structure, as well 

as possible improvements and future iterations on the current structure. Generating this 

overview also provides a way that other end-users could implement and troubleshoot the 

network, modifying it for their own purposes. Lastly, using these XAI techniques increases 

awareness of them, and can hopefully influence future researchers to implement them as 

well, reducing the number of black box models in the future. 
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