
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2021 Fall Honors Capstone Projects Honors College

12-1-2021

DESIGNING, DEVELOPING, AND DEPLOYING FAST AND SECURE DESIGNING, DEVELOPING, AND DEPLOYING FAST AND SECURE

SYSTEM ARCHITECTURE WITH AUTONOMOUS DATA SYSTEM ARCHITECTURE WITH AUTONOMOUS DATA

IMPORTATION FEATURE FOR STATEFARM’S SPONSORED LIFEFIT IMPORTATION FEATURE FOR STATEFARM’S SPONSORED LIFEFIT

APP APP

Sushant Gupta

Follow this and additional works at: https://mavmatrix.uta.edu/honors_fall2021

Recommended Citation Recommended Citation
Gupta, Sushant, "DESIGNING, DEVELOPING, AND DEPLOYING FAST AND SECURE SYSTEM
ARCHITECTURE WITH AUTONOMOUS DATA IMPORTATION FEATURE FOR STATEFARM’S SPONSORED
LIFEFIT APP" (2021). 2021 Fall Honors Capstone Projects. 9.
https://mavmatrix.uta.edu/honors_fall2021/9

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2021 Fall Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_fall2021
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_fall2021?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_fall2021/9?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Sushant Gupta 2021

All Rights Reserved

DESIGINING, DEVELOPING, AND DEPLOYING FAST AND SECURE

SYSTEM ARCHITECTURE WITH AUTONOMOUS DATA

IMPORTATION FEATURE FOR STATEFARM’S

SPONSORED LIFEFIT APP

by

SUSHANT GUPTA

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2021

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my project mentor Dr. Chris Conly, an

assistant professor at UT-Arlington, for providing me this opportunity to work on this great

POC project by Statefarm Insurance Company. Professor Conly was always there to help

us with any kind of assistances, including but not limited to, making available all required

resources and helping with the better understanding of project requirements and

specifications. I also must thank the Statefarm representatives, Dawsen Richins and Amy

Simone, for setting the milestones high every week that inspired me to push limits and

learn new things every day. I would also have to extend my gratitude to all UTA staff and

faculties who have been the parts of my exciting journey of completing my first bachelor’s

degree at UTA.

I will never forget to acknowledge my family and friends for believing and always

inspiring me. Their love and supports have always been my motivation to never back down

and face every bit of challenges that came in my way of learning and growing academically.

Lastly, I would like to thank my SpaceTabs team: Naveen Narayan Gnanapazham, Krishna

Khadka, Shishir Pathak, and Puskar Dev, for being best team members and working hard

to achieve our goal. Without all these above-mentioned people and/or entities, I would

never be able to finish this project successfully.

August 20, 2021

 iv

ABSTRACT

DESIGINING, DEVELOPING, AND DEPLOYING FAST AND SECURE

SYSTEM ARCHITECTURE WITH AUTONOMOUS DATA

IMPORTATION FEATURE FOR STATEFARM’S

SPONSORED LIFEFIT APP

Sushant Gupta, B.S. Computer Science

The University of Texas at Arlington, 2021

Faculty Mentor: Chris Conly

Our sponsor, State Farm Insurance, is interested in creating a system that will

maintain a record of profile for its customers’ daily health habits to get a better view of

their overall health. The system should use Machine Learning on the user’s recorded health

data, along with other health related information, to determine how healthy the individual

is and to provide better health and/or life insurance rates to that individual. Concerning the

sponsor requirements, we created the system called Lifefit Application. It is a mobile

(Android and IOS) and web-based application which, with the support of AWS cloud

computing and storage services, gathers data from Fitbit watches, runs machine learning

on the data to compute health scores, and finally displays the scores along with their daily

health data like calories burnt, steps walked, heart rate, and sleep pattern, etc. to its

 v

registered users. The health score can be used by the Statefarm Insurance Company to

provide better insurance rates and incentives to its user base. The application is also a good

source of inspiration to the users who can monitor their health activities and make

significant changes needed to improve their scores as well as their health status.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

Chapter

 1. INTRODUCTION ... 1

 1.1 Problem Statement ... 1

 1.2 Project Overview ... 1

 1.3 Some Major Requirements .. 2

 1.3.1 System shall collect data from Fitbit on its own 2

 1.3.2 System shall use strong machine learning model to calculate
 health score of users .. 3

 1.3.3 Applications shall have fast loading graphical representation
 of user’s health data .. 3

 1.3.4 System shall be secure and safe .. 3

 2. METHODOLOGY .. 4

 2.1 Designing System Architecture ... 4

 2.2 Developing Systems... 5

 2.3 Deploying Systems .. 7

 3. SYSTEM COMPONENTS .. 9

 3.1 Mobile Application .. 9

 vii

 3.2 Web Application .. 12

 3.3 Machine Learning Module ... 13

 4. AUTOMATION AND API ... 16

 4.1 Task Automation .. 16

 4.1.1 Automated Fitbit Data Importation ... 16

 4.1.2 Automated Score Calculation ... 18

 4.2 Web APIs for Data Handling ... 19

 5. CONCLUSION .. 21

REFERENCES .. 23

BIOGRAPHICAL INFORMATION ... 24

 viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 System Architecture Diagram .. 4

2.2 Code Structure ... 7

2.3 Lambda Function Hosted ... 7

3.1 Mobile App Login UI .. 10

3.2 Mobile App Profile Page UI .. 10

3.3 Mobile App Dashboard UI... 11

3.4 Mobile App Graphical UI .. 11

3.5 Web App Sign-up UI ... 12

3.6 Web App Sign-in UI .. 13

3.7 Web App Dashboard UI... 13

3.8 RFC Model in Action... 15

4.1 Fitbit Authentication Flow (Authorization Code Flow) 17

4.2 Automation Code Snippet .. 18

4.3 Web APIs Code Snippet .. 20

 ix

LIST OF TABLES

Table Page

2.1 Tech Stack Used in Development ... 6

4.1 Routes for Web API .. 19

 1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

To determine a good insurance rate, one must consider several factors depending

on the nature of the insurance. Determining a better life insurance rate can be challenging,

as it involves a greater number of factors with comparatively higher uncertainties. With the

wide development in science and technology, many insurance companies are looking for

innovative techniques to achieve such goals. Since health status is a very important factor,

traditionally a doctor visit is required to analyze a customer’s health and provide a life

insurance plan. But health being a dynamic factor, it is hard to predicate one’s future health

with a single doctor’s visit, which only captures a snapshot of someone’s health. An

ongoing monitoring system would serve as a benefit for tracking someone’s general health

information across a long period of time and, thus, provide a better understanding of their

health habits that can be used to determine their insurance plan. Our sponsor, Statefarm, is

interested in creating a system that maintains profile of an individual’s daily health habits

to get a better view of his/her overall health by using Machine Learning on the health data

along with other information and, thus, determine better insurance rates for that individual.

1.2 Project Overview

The project, Lifefit Application, is a sponsored project by Statefarm Insurance

Company. It is a Proof-of-Concept (POC) project for Statefarm that has certain specific

requirements with a wide range of possible additional features in the future. The project

 2

consists of three major components: Mobile Application, Web Application, and Machine

Learning Module. The main value proposition of the project is to provide Statefarm with a

system or tool that they can use to monitor their customer’s health habits to have more

confidence while providing better insurance rates and other incentives. In short, it will

serve as a tool for risk prediction and prevention so that the insurance company can produce

more profit by attracting more customers with better insurance rates after analyzing the

risk for every individual customer.

The system has different layers that work together to achieve the set goals. The

system will get raw daily health data from user’s Fitbit watch, format it in the proper .csv

file, and then store them on AWS S3 buckets in systematic manner. Another component of

the system will later get the data, run the machine learning model to calculate a score out

of 10 (1 being least health and 10 being the healthiest), and finally stores the score in

another .csv file for future use. Finally, the mobile and web applications will get those data

and scores from S3 and display to the users. Statefarm will use the aggregate scores,

calculated over a certain period, to provide better quote to their customers.

1.3 Some Major Requirements

Though Lifefit has most of the common application requirements such as sign-up,

sign-in, password reset, user profile tab, and log-out, etc., it has some major specific

requirements that are critical to this project. Some of these requirements are as follows:

1.3.1 System shall collect data from Fitbit on its own

The system should be able to collect daily health data such as steps walked, distance

walked, calories burnt, heart rate, and sleep pattern, etc. from the user’s Fitbit watch

automatically, and store it in proper format to AWS S3 bucket for future uses.

 3

1.3.2 System shall use strong machine learning model to calculate health score of users

The system should implement a strong machine learning model to calculate daily

health scores based on the health data collected each day. Another algorithm should be

used to find aggregate final scores using the past daily scores. The final aggregate score

will be used by Statefarm to provide insurance quotes to its customers.

1.3.3 Applications shall have fast loading graphical representation of user’s health data

Android and web applications should have the ability to render the user’s daily

health data using the most intuitive graphs. The applications also should be able to load

graphs faster for better user experience. These features give users the ability to monitor

their health status closely, make necessary changes in their health habits to achieve better

health, and, thus, attain a better health score with better insurance rates from Statefarm

Insurance Company.

1.3.4 System shall be secure and safe

Since the system deals with user’s health and other sensitive information, the

system is required to be secure and safe from data leaks and being hacked by external

threats. It is important to have better authentication and API communications within the

system.

 4

CHAPTER 2

METHODOLOGY

2.1 Designing System Architecture

Since the project was inherited from prior teams, several security and performance

issues were found in their existing system architecture. As a result, a new system

architecture was proposed to the team, professor, and sponsors for better security and

performance of the system. The current system architecture consists of three layers:

Presentation Layer, Business Logic Layer, and Data Access Layer. Each layer

communicates with each other in a safe and secure manner as shown in the diagram below.

Figure 2.1: System Architecture Diagram

 5

The Presentation Layer has the components in which users interact. It consists of

three subsystems viz. Capture Subsystem, Mobile Application, and Web Application. The

capture subsystem is made up of the Fitbit application and server that are responsible for

recording the user's health data of every second the user is using the Fitbit watch. The

Mobile and Web applications are responsible for display information like daily health data,

scores, and profile details to the authenticated users.

The Business Logic Layer contains all the backend processing of the system. It has

most of the AWS cloud computing services in our system. It is responsible for the

automated data importation from the Fitbit server, using Fitbit API and calculating health

scores. It also provides several API endpoints that are used to exchange data between data

storage and android/web applications’ user-interface (UI).

The Data Access Layer is the last, but critical, layer of the system where all kinds

of data are stored. It consists of application databases and storage facilities. Subsystems in

the data access layer communicate with subsystems in the presentation layer, such as

mobile and web apps, through secure APIs hosted in the business logic layer.

2.2 Developing Systems

After architecting a strong and secure system, it is equally important to develop the

system with the same amount of security and safety concerns in mind. This project has

several subsystems, and, thus, several code bases. Different subsystems require different

programming languages and frameworks. To choose the correct and most efficient tech

stacks for the project, a significant amount of time was spent researching what

programming languages and/or frameworks would be suitable for the kind of tasks in the

system. Any programming language and/or framework selected for a particular task must

 6

be able to successfully satisfy the complexity and security needs of the subsystem. Table

2.1 shows the complete list of the tech stacks used in various components of the project.

Table 2.1: Tech Stack Used in Development

 Programming Language Framework (if any)

Mobile Application JavaScript, Java, Others React-Native
Web Application JavaScript, HTML, CSS ReactJS, Bootstrap

Web APIs Python Flask
Automation Code Python -

The use of reactJS and bootstrap frameworks increases the responsiveness and

performance of the web application by a huge factor in comparison to the old web

application designed by prior teams. The python Flask App API is used as an

interface between the AWS data management services (DynamoDB and S3 bucket) and

the web application for smooth and fast data transmissions. This increases the web

performance by 60-70% in terms of data processing and rendering speed. Using React-

Native instead of Android SDK for the mobile application, the application becomes OS

independent and efficient enough to handle synchronous activities in it. AWS Amplify is

used to implement the AWS Cognito and AWS Identity Pool to handle user authentication

processes across the system with a greater security. Finally, the python script is

developed to make the data importation process easy and autonomous with the help of

AWS lambda.

To increase the productivity of the team as well as to minimize the loss if

something goes wrong during development, proper management of the codebases was

essential. This was accomplished by using GitHub as the version control tool and arranging

all independent tasks in separate folders.

 7

Figure 2.2: Code Structure

Figure 2.3: Lambda Function Hosted

2.3 Deploying Systems

Now that the system has been designed and developed, it is also very important to

deploy the system in a safe and secure environment. For the project, some of the

subsystems were needed to be hosted on the web, whereas others needed to be hosted

 8

natively on the development machine. To accomplish the purpose of automated data

importation, the AWS lambda function is used to serve the script that makes API calls to

the Fitbit server for each registered and synced user, to obtain daily health data, and stores

it safely in the AWS S3 bucket. These data are used by the machine learning model to

calculate the user's health score. The AWS EC2 is used to host the python flask app API to

provide better computing power. Finally, the web app is hosted on Google’s free firebase

hosting service.

 9

CHAPTER 3

SYSTEM COMPONENTS

There are three major components in the system: Mobile App, Web App, and

Machine Learning Module. Each component has its own significance added to the project.

This chapter will briefly explore the purpose of each component with the screenshots of

them in action.

3.1 Mobile Application

Mobile application is one of the most important factors of the system. It is meant

to serve all general-purpose activities. Users should be able to signup, login, view their

profile details, update the profile, check their health scores, see historical health data, and

reset passwords, etc. The mobile application also lets users sync our system with the Fitbit

server and store the returned access tokens and refresh tokens in the database. As explained

in chapter 2, it is developed using React-Native framework, which makes it compatible

with both android as well as iOS mobile phones.

 10

Figure 3.1: Mobile App Login UI

Figure 3.2: Mobile App Profile Page UI

 11

Figure 3.3: Mobile App Dashboard UI

Figure 3.4: Mobile App Graphical UI

 12

3.2 Web Application

The web application is another important component of the system. It has all the

features/use-cases that the mobile application has. The only difference between the web

application and mobile application is that the web application is accessible through any

computing device that supports the modern web browsers, whereas the mobile application

can only be run on mobile devices (Android and iOS). As mentioned in Chapter 2, it is

developed using the ReactJS library as well as the Bootstrap 5.0 CSS framework. The web

application uses web API, developed in Python's Flask Framework, running on AWS EC2,

to reduce the data accessing and processing load on the client-side, and, thus, increase the

application's performance and security. The client-side of the web application makes calls

to the server-side flask application's endpoints to obtain formatted health data and other

user details stored in the remote database and storage. Some of the screenshots of working

web application are:

Figure 3.5: Web App Sign-up UI

 13

Figure 3.6: Web App Sign-in UI

Figure 3.7: Web App Dashboard UI

3.3 Machine Learning Module

Finally, the last but the most important component of the system is the machine

learning module. Machine learning is used to calculate health scores for individual users

on a daily basis. To achieve a convincing accuracy rate, various classifiers and models were

trained and tested. All three types of machine learning techniques (Supervised Learning,

 14

Unsupervised Learning, and Reinforcement Learning) were explored and tested. The K-

means clustering, an unsupervised machine learning technique, was used to find the

clusters and the centroid of the clusters within the health data. The centroid was used to

populate synthetic data, which is then used to train the model. After training and testing

various ML models, it is observed that the Random Forest Classifier (RFC) has the highest

accuracy rate, almost 80% on average, for most of the classifications. The next closest

model with a better accuracy rate was Bagging Classifier.

The daily score, calculated using the machine learning technique, is then used to

calculate the final aggregate score using Exponential Moving Average (EMA) algorithm.

EMA is a type of moving averages that places greater weight and significance on the most

recent data points (Chen). The formula used to calculate the EMA is as follow:

𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖

1 + 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
��

+ �𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ �1 − �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖

1 + 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
���

where,

 Smoothing = 2.0

Therefore, the final aggregate score represents the average score of all past daily

scores with greater weight on the most recent health data. This score is then used by

Statefarm Insurance Company to provide life and/or health insurance quotes to the users.

 15

Figure 3.8: RFC Model in Action

 16

CHAPTER 4

AUTOMATION AND API

4.1 Task Automation

The focus throughout the duration of the project was to automate several tasks in

the system such as data importation from the Fitbit server to the AWS S3 bucket and the

calculation of users’ health scores using their daily health data stored in the S3 bucket. This

chapter will explore the implementation of such tasks in detail below.

4.1.1 Automated Fitbit Data Importation

The system is designed in such a way that every user who owns a Fitbit watch can

sync their watch by logging into our mobile or web app. Anyone syncing their Fitbit watch

to the app is giving permission to the system to collect their daily health data through

series of API calls provided by Fitbit. After successful syncing, access tokens and refresh

tokens provided by the Fitbit server, are stored in AWS DynamoDB for each user. These

tokens are used later to collect all user’s data.

 17

Figure 4.1: Fitbit Authentication Flow (Authorization Code Flow)

As shown in Figure 4.1, a valid access token is needed to make a successful API

call to the Fitbit server. An access token is only valid for 8 hours after its generation. A

valid refresh token is used to update the access token for each user. A python script is

developed, which retrieves the list of every user’s access tokens, refresh tokens, and user

id. The script then iterates over the list and makes several API calls to the Fitbit server,

using the access token and its associated user-id, to get all kinds of health data for that user.

Then, it formats the data properly in a .csv file and sends the file to the AWS S3 bucket

after giving a proper name to make it easy to retrieve it later when needed. Using the refresh

token, the script also updates the access token, if expired, in the DynamoDB. The script is

hosted on AWS Lambda with the CRON job scheduled at midnight so that the complete

data for the day can be accessed and retrieved from the Fitbit server. AWS Cloud Watch is

used to perform the CRON job at the scheduled time every day.

 18

Figure 4.2: Automation Code Snippet

4.1.2 Automated Score Calculation

The selected machine learning model is used in the automated script to calculate

the score automatically at a specified point of the day. Since all the resources, such as

DynamoDB and S3 bucket storage, which contains user ids and health data are contained

in the AWS cloud, it was decided to keep the score calculation process on the AWS cloud

too. That is why AWS Sage-maker studio and Notebook instances are used to run the model

on the user’s daily data and predict their health score. The AWS Cloud-watch is again used

to execute the CRON job established on the AWS Lambda function. Here, the lambda

function initiates the Notebook instance and runs the ML model on every user’s health data

for that day to calculate their scores and update the score in a .csv file that contains the

score history for the user.

 19

4.2 Web APIs for Data Handling

Using Python-based Flask Framework, a server-side application is developed. This

application consists of several routes, which are used by the web application to get different

data for the users. The following table shows the provided routes and their respective return

values in the application.

Table 4.1: Routes for Web API

Routes What does it return?

'/getDailyTotal/<string:uid>/<string:date>' This returns the total values of each health metric
of the specified user for the specified date.

'/getGraphData/<string:uid>/<string:date>' This returns the hourly data for each heath metric
of the specified user for the specified date.

'/getSleepsData/<string:uid>/<string:date>' This returns the sleep related data of the specified
user for the specified date.

'/getScoreHistory/<string:uid>' This returns the score history of the specified
user.

The app gets an HTTP request from the web application for a specific type of data,

and then it fetches the data from the AWS S3 bucket, formats the data in a proper JSON

object, and finally sends it to the web application for an easy and fast rendering in the

client-side application. The main purpose of these Web APIs is to reduce the load of the

web app and, thus, enhance the performance. The flask app is currently hosted on the AWS

EC2 instance, which provides public endpoints that can be requested with proper header

and security credentials from any client-side application.

 20

Figure 4.3: Web APIs Code Snippet

 21

CHAPTER 5

CONCLUSION

The main purpose of this project was to understand and test the system of analyzing

a person’s health data to predict their future health status. The future health status is

assumed based on a score that is calculated using machine learning techniques using the

user's prior health data. The score is used to provide Statefarm’s health and/or life

insurance quotes to its customers. A partially working system was handed to the team to

fix the issues and improve the system. After an initial assessment of the existing system, a

completely new system architecture was proposed that has far better performance and

security compared to the old one. The implementation of the AWS Cognito and Identity

pool, along with the AWS DynamoDB, made the system more secure by providing

persistence and encrypted user authentication data flow between various components of

the system.

Similarly, the addition of the automation of Fitbit data collection was another great

improvement in the system. This allowed the system to have the complete persistence

health data of every user without the need for any personal interaction. It also helps to

prevent the possible fraud whereby users hide their certain day data when they do not

perform enough exercise to maintain good health. The AWS Lambda service made this

automation possible, and the AWS Sage-maker made the score calculation automated.

Again, the development of web API increased the performance of the web application by

a huge factor. Finally, this project presented a lot of opportunities to learn several new

 22

things. It also revealed what a real-world development project looks like, and how one can

lead a team and handle the pressure of multiple work at the same time.

23

REFERENCES

“Authorization Code Flow.” Accessing the Fitbit API,

dev.fitbit.com/images/reference/web-api/Authorization_Code_Flow-

e38dbc200462c4364886550be7133510.png.

Chen, James. “Exponential Moving Average (Ema).” Investopedia, Investopedia, 19 May

2021, www.investopedia.com/terms/e/ema.asp.

24

BIOGRAPHICAL INFORMATION

Sushant Gupta is currently a graduating senior at the University of Texas at

Arlington and an application development intern at Triencon Services Inc., Arlington, TX.

He is acquiring his Honors Bachelor of Science in Computer Science with a minor in

Mathematics. He already has an Associate of Science degree with a field of study in

Computer Science from Dallas College. Sushant is highly interested in the research of

software development, mostly related to the medical and health care system. He is also

very good at web development and writing solution patches to improve an existing system.

He has strong leadership skills too, which he has demonstrated being a project lead and

involved in the student body senate at UTA. Sushant loves working on a variety of projects.

He has worked a couple of on-campus jobs, one being a math tutor and another a research

assistant. He has also done a couple of internships so far. During his first internship, he

helped to develop a python-based application that manages huge bidding data and analyzes

them to predict the range of bid value of any similar open contract in that location. This

application can be used by the bidding companies to increase their bid winning odds and,

thus, making more profit from the contract. At the second internship, he built an IT

Monitoring web application using ASP.NET and ReactJS. One can find the full list of the

projects he has worked on in his GitHub repo at www.github.com/sushantcode. Sushant is

expecting to graduate in the Fall 2021 with Summa Cum Laude and is planning to look for

a job as a full-time software developer at a company.

	DESIGNING, DEVELOPING, AND DEPLOYING FAST AND SECURE SYSTEM ARCHITECTURE WITH AUTONOMOUS DATA IMPORTATION FEATURE FOR STATEFARM’S SPONSORED LIFEFIT APP
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Problem Statement
	2.1 Designing System Architecture
	2.2 Developing Systems
	Figure 2.3: Lambda Function Hosted
	2.3 Deploying Systems

