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Abstract 
The goal of this project was to create an image segmentation model that would 

extract an image of H&E pathology slides from real life scenarios. This was a part 

of a project that required the extraction of an image, querying of the image, and 

displaying the results. The baselines of the model were to be efficient, run on 

mobile devices, and be able to work with cameras of varying resolutions. 
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Introduction 
  

Medical imagery is an established, age-old method for analyzing the human 

body. Many have been established well before current times and continue to 

improve with use of newer tools coming out today. One of these techniques to 

prepare tissue samples is H&E staining.  

Like most things in the medical field, it has been rigorously tested to ensure 

its efficiency and reliability. Staining involves dyeing a part of human tissue to view 

under a microscope. It was first introduced in the 1800s and has been a 

cornerstone in the field of histopathology since its inception.  

The way these medical images are interacted with is the similar to as it was 

were from back in the day. It involves a doctor sitting down and manually reviewing 

slides, basing their decisions off experience from seeing slides. But, there are new 

improvements being made today involving computer technologies. 

Implementations of image segmentation have been seen on digital pathology 

slides to diagnose, or label, images of pathology slides. There are similar 

techniques being introduced in other adjacent fields, such as image segmentation 

in CT scans to isolate structures, or in ultrasound imaging for detecting 

inconsistencies in the body. Applying these newer techniques is a fast growing field 

for all things related to imaging.  
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The goal of this project was to design and implement a model to assist in 

extracting medical imagery for analysis. The model would give physicians an 

efficient tool to quickly extract images of pathology slides from real life scenarios to 

improve intractability through the diagnosis processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Inspiration 

 

 This project was inspired by a doctor’s request for a pathology slide search 

implementation. The objective was to be able to quickly search given pathology 

slides and display the search results in an interactable manner.  

The pathology slide image segmentation model retrieves a picture of the 

slide and sends the extracted image to a multimodal search engine. The extracted 

image would be embedded into a latent space and searched across other 

pathology slides. Finally, the result would be sent over to a computer for imaging.  

This paper will focus on the initial stage: The development of the image 

segmentation model. The baseline for the model was to extract the pathology 

slides from a camera. A simple example would be a printout picture of a slide lying 

on a table.    

Example taken from data set 
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 The overall goal is to create a seamless interaction for on-the-field 

physicians to easily search given pathology slides in various real-world settings. 

Physicians often spend significant time in front of pathology slides when attempting 

to diagnose patients. Given a consistent and seamless approach to searching and 

displaying pathology slides, it would aid in comparing patient data with stored 

references to give a diagnostic in a timely fashion. 
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Background 

H&E Pathology slides: 
 As a medical procedure, doctors can order a patient to undergo a biopsy, 

where a cut of human tissue is extracted and preserved. This tissue is sent to be 

examined by a specialist, namely a pathologist. To view these thinly cut tissues, it’s 

not enough to simply place it under a microscope. To mark notable sections of the 

tissue for pathologists, who are specialists that analyze pathology slides, the tissue 

undergoes processing before review. These processes vary, but for this specific 

paper the target is hematoxylin-and-eosin-stained slides, which are also known as 

H&E slides. 

  H&E slides are the most common and general kind of pathology slides. 

They are a baseline for pathology and are able to consistently provide info on the 

morphology of tissue. The process of creating an H&E slide involves dyeing the 

tissue with Hematoxylin and Eosin stains to bring color in the morphology of the 

slide. Simply put, Hematoxylin will dye the cell nuclei blue, and the Eosin will dye 

the cytoplasm, extracellular matrix, and other structures various shades of pink.  

The results of H&E staining produce pathology slides that are dyed and 

captured in very high resolution. It’s common that a single image to be multiple 
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gigabytes large, resulting in an image with stains that allow pathologists to analyze 

the morphology of the tissue at a microscopic level.  

The results of H&E slides are foundational to the field of pathology, as 

pathologists study these kinds of slides to identify subtle changes and patterns 

across tissues. The results of these slides are directly used in diagnosing patients 

with various medical conditions. The target audience of this project would be 

physicians who are frequently referencing these pathology slides and would need 

to reference different slides during diagnosis for results. 

   

Examples of H&E Pathology slide from the Dryad dataset 
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Image Segmentation: 
 

 To enable computers to perceive the real world, computers have had 

sensors attached to them and are then given the ability to analyze surroundings. 

Cameras have historically been used as a consistent sensor to stream video input 

data to computers. This field study, aptly named computer vision (or shorthanded 

to CV) focuses on creating systems to derive information from visual information. 

The subsection of this field implemented in this paper is image segmentation.  

 Image segmentation put plainly is as the name implies, a way to segment an 

image. While for humans it’s natural to perceive objects within a field of view as 

individual, for machines it’s a much harder task to differentiate objects within a view 

as individual. The goal of image segmentation is to correctly separate groups of 

pixels within an image, partitioning them into discrete objects. 

 The goal of this project was to partition an H&E pathology slides from its 

surroundings. To achieve this, an image segmentation model was created with the 

focus of segmenting specifically the pathology slide and grouping anything not 

related as junk data. 

The model used in this project was not created from scratch, and a 

backbone was implemented to accelerate the training process. A backbone is a 

pretrained foundational architecture that contains pretrained weights and balances. 

The backbone only serves as a general-purpose structure for models and must be 

built upon for application in more specific use cases. 
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The chosen backbone model was ResNet-50, which is a popular 

Convolution Neural Network architecture. The model choice was decided using the 

2022 paper “Backbones-Review: Feature Extraction Networks for Deep Learning 

and Deep Reinforcement Learning Approaches” by Omar Elharroussa, Younes 

Akbaria , Noor Almaadeeda and Somaya Al-Maadeeda. They tested a multitude of 

model backbones and across the board ResNet-50 scored consistently well. 

Image of ResNet 50 Model Architecture 

 

For training the image segmentation model, image masks were 

implemented. An image mask is an overlayed image with labeled sections, marking 

where an object is. In this case, the image masks were not full sized images but 

rather pixel value points of where the object, in this case pathology slide, was 

located inside of the image.  
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Image and corresponding mask representation 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Core ML 

 For application on mobile devices, there are two target platforms: Apple and 

Android mobile phones. In todays age it is realistic to say that most working adults, 

notable here physicians, will have a cellular device. This gives a consistent 

baseline to work towards for the real-world application, which is to be able to run 

on modern smartphones. 

 For usage on Apple smartphones, and all Apple platforms, PyTorch models 

need to be converted into Core ML models. Core ML is Apples proprietary machine 

learning framework which is used for efficiently running models on Apple devices. 

Its meant to serve as a standard for their devices, and supports model formats 

from popular model libraries such as PyTorch, TensorFlow, etc.  

 In this project, the model is converted to an Core ML model for usage on 

Apple devices. This process includes tracing the model and applying it in a Swift 

framework to run the image segmentation.  

 Tracing a model, in the context of Core ML, is a 1-to-1 copying of a non-

Core ML model into a Core ML model. The output Core ML model is able to be ran 

on any updated Apple device, meaning support for notably Apple smartphones 

here. The process is inconsistent in its completeness, and some PyTorch layers 

are not supported. An example would be PyTorch’s argmax function being 

supported by Core ML tracing but its argmin function being unsupported.  
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Related Works 
 As mentioned in the introduction, there are a lot of related works growing in 

the field of medical imaging. First and foremost, the most related working is image 

segmentation of pathology slides. This form of segmentation is applied directly to 

WSI (whole slide imaging) slides. The example being mentioned in this paper will 

be from the research article “A generalized deep learning framework for whole-

slide image segmentation and analysis” by Mahendra Khened, Avinash Kori, Haran 

Rajkumar, Ganapathy Krishnamurthi & Balaji Srinivasan. 

 To being their training process, an approximate mask is created for the 

tissue sections of the WSI images. The goal of this is to remove unnecessary, non-

tissue area from the image before being fed to the model. By removing the 

background, it allows for higher accuracy results with lower computational costs. 

Training on just the tissue sample area will avoid confusing the model with 

unrelated white space. The computational costs are lowered alongside this since 

there is physical less area to input. This is significant because the WSI images are 

massive, and the white space surrounding tissue can count up to millions of pixels.  

 These WSI images are large in size, with the paper mentioning that their 

typical WSI image is 80,000 x 60,000 pixels. This is the nature of most WSI images, 

as the resolution needs to be microscopic for physicians’ use. The full resolution  

allows them to deeply understand the nuclei and cell structure of each patient’s 

tissue sample. 
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   To deal with these massive images, the researchers take the 

approach of patching the WSI images. The patches area is decided using a lower 

resolution image, based on the area of the image masks, and then patched from 

the full resolution image. Combining the masking with the patching allows for the 

patches to extract only the most relevant areas of the tissue, and completely 

bypassing any whitespace. This approach yields to consistent and high information 

patches. The patches are split into cancerous and non-cancerous patches 

depending on whether there is any cancerous pixels within a patch. The threshold 

for being labeled cancerous is a single cancerous pixel. 

 Preprocessing the patches with image augmentation is also introduced. The 

images are applied with augmentations such as Gaussian Blur and flips along an 

axis. Color augmentation is also utilized, with example applications being changes 

to brightness, contrast, and hue.  

 Tumorous regions were found to be a very small section of section of each 

WSI image. This is because WSI images are massive as explained before, a single 

label cannot properly classify it when being used for training data. A human tissue 

sample can is labeled as cancerous if any amount of cancer is found, even if 

sections of the tissue sample are completely cancer free. This approach is fine in 

the real world since that implication is understood by physicians, but corrections 

need to be made when using the images as training data, especially so when data 

is being patched from slides into cancerous and non-cancerous patches. The 

approach taken to avoid class imbalance of cancerous and non-cancerous data 
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was to use a hybrid loss function. The hybrid loss function utilizes cross-entropy 

loss and “a loss function based on the Dice overlap coefficient.”  Loss is a way to 

represent the amount of error, and using functions to minimize loss leads to 

accurate models. The first loss used here is cross-entropy, which is a logarithmic 

based loss function. The formula for cross-entropy is:  

H(P,G) = -∑ p(x) log(g(x)) 

where P is the target probability distribution of x, G is the models outputted 

distribution of x, and x is the object. In this case, x would be the tissue patch 

extracted from a WSI image. Cross-entropy is a well-established loss function for 

classification tasks, and is a good pick here since the model is attempting to 

classify sections of WSI images as cancerous and non-cancerous The other 

mentioned loss function utilizes the “Sørensen–Dice coefficient”. The formula for it 

is: 

 2 * |A ∩ B| / (|A| + |B|) 

where A and B are two sets. A ∩ B, or A union B, is a representation of the overlap 

between the two sets. The |A ∩ B| is the count of elements that overlap between A 

and B. |A| is the count of elements inside set A, and |B| is similarly the count of 

elements inside set B. |A| + |B| is the combined count of elements inside set A and 

B. |A ∩ B| is multiplied by two because each overlap is counted once, but the 

Sørensen–Dice coefficient is finding the overlap percentage between the combined 

sets. By multiplying |A ∩ B| by two, it properly represents the percentage of overlap 

between two sets instead of one. The exact cross-entropy equation used in this  
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situation is: 

𝐶𝐿 = ∑(𝑔𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑔𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑁

𝑖

 

And the dice loss equation used is: 

 𝐷𝐿 = 1 −
2∑ ⬚𝑁

𝑖 𝑝𝑖𝑔𝑖

∑ ⬚𝑁
𝑖 𝑝𝑖

2+∑ ⬚𝑁
𝑖 𝑔𝑖

2 

Finally, the combined equation for both losses is: 

𝐿𝑜𝑠𝑠 = 𝛼 ∗ 𝐶𝐿 + 𝛽 ∗ 𝐷𝐿𝐵𝐺 + 𝛾 ∗ 𝐷𝐿𝐹𝐺  

where CL is cross-entropy loss and DL is dice loss. DLFG represents the dice loss 

of the foreground pixels that relate to tumorous pixels and DLBG is of the 

background pixels that relate to non-tumorous pixels. The result is a formula 

capable of capturing mistakes made by the overall classification, the classification 

of tumorous pixels, and non-tumorous pixels respectively. This also solves the 

imbalance issue by separating the loss values of tumorous and non-tumorous 

pixels, ensuring that one won’t imbalance the other. 

 The approach taken for creating the inference model involves using three 

different backbones. There are three combined models used to produce the output. 

U-Net with DenseNet-121 as the backbone encoder, U-Net with Inception-ResNet-

V2 as the backbone encoder, and DeeplabV3Plus with Xception network as the 

backbone. Their results showed that “using an ensemble of three different 

networks provided superior segmentation performance compared to using the 
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networks individually,” meaning that the combined outputs of the three models was 

better than the output of one individual model. 

 For inference, the preprocessing steps are different than the ones for 

training. During patching, there is a set overlap on each patch for melding 

consecutive patches. It was found that 50% between neighboring patches was a 

balanced amount for “accuracy and computational efficiency.” The patch size was 

also increased by a factor of 4 for inference compared to training for greater 

accuracy.  

 

 This ties into the work in this paper because it’s a form of image 

segmentation performed onto a pathology slide. Their goal was to label sections of 

pathology slides as cancerous or non-cancerous. The WSI images of pathology 

slide were patched, and then inference was performed on the patches to generate 

heatmaps of the tissue. The inference heatmap patches had 50% overlap with their 

neighboring patches and were stitched together to create one overall image. The 

end result is a heatmap with certain sections identified as cancerous tissue. This 

uses a lot of similar fundamental concepts compared to the project in this paper, 

but is still notably different. 

 There is a difference between what is being segmented. In the described 

work, the goal is to segment the cancerous tissue in a WSI image of a pathology 

slide. This is an application leaning more towards clinical testing, it infers what is 

cancerous and gives this suggestion to the user. On the other hand, the image 
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segmentation in this thesis paper does not involve labeling sections of a slide or 

labeling the slide at all with a diagnosis. The objective is to segment an image of a 

pathology slide itself and not apply any analysis to the data within the slide. The 

form of segmentation is significantly different, and the objectives are as well.  
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Model Overview 
 The overall program can be broken down into a few key steps. First, is 

initialization of the model. The model used a ResNet-50 architecture as a 

backbone with a segmentation head. To properly utilize ResNet-50, the last layers 

were removed. This is because the last two layers of ResNet-50 are part of its fully 

connected layer, which will not be needed here for a single object image 

segmentation.  

 

More detailed image of ResNet-50 Architecture 

 

 The next step is to preprocess is to split the dataset into training and 

validation images. The dataset of this project comprised of a public data set of 

whole slide pathology slide images, photos of the same images printed onto paper, 

and photos of a textbook with pathology slides on them. The photos were taken 

using and iPhone 12 camera. For splitting the dataset, a 70-30 split of the first two 

data sources, and the pictures of pathology slides on paper were saved for final 

testing. All of these images had an attached image mask. For the images from the 
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Dryad dataset, entire image was the mask bounding area. This is because they 

dataset consisted of only whole slide imaging (also known as WSI) of pathology 

slides. This meant the entire image was truly a pathology slide. It should be noted 

that small selection of the images did have inconsistencies in their scanning but 

were kept in to be true to real life scenarios. 

Writing on the bottom left                    Scanning mistake on top right  

 

 The rest of the dataset was manually annotated with image masks.  
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Example of annotated masks, the area in the purple box represents the H&E slide 

 

 

In total, the training and validation dataset consisted of 584 images of 

traditional H&E WSI and 53 images taken from a phone camera and the test 

dataset consisted of 20 images of WSI on paper.  

After splitting the dataset, the next step would be training the dataset. All 

images are preprocessed before being trained to improve accuracy. The images 

are normalized, and have PyTorch’s random flip, invert, and rotation applied to 

them. A Gaussian blur and color jitter and also applied.  

The model is set to accept input and output of images at the resolution of 

640x640. This was based on the second section of this program, which was the 

image search of the pathology slide. The input resolution of the search was 

640x640, so a larger resolution would end up as lost information, and a smaller 

resolution would hinder the search.  

The training function utilized masks for measuring accuracy. Everything 

inside of the image masks bounding area was labeled as a pathology slide and 

everything outside of it was grouped together. 100 epochs were used for training, 

with the epochs containing the final and best results being saved. 
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Following training is the function implementing the model. The segmentation 

function consists of a few parts. The steps were preprocessing, running the model 

itself, identifying possible noise, and returning the final images. 

The first step of the preprocessing is adding padding to the input image. 

This is done here because it was found the mode was disproportionate towards 

white bounding areas found within input. The theory behind this is that because the 

WSI dataset consistently had a bounding white space on each image, it made the 

model flag false positives. By adding a bounding area and later removing it, the 

model performed much better on real world scenarios. The image is then resized to 

640,640 resolution with the padding to be inputted into the model. 

The next step was removing possible noise received from the model. The 

received output is converted into a heatmap, and sections of certain density are 

grouped together.  

For extracting dense areas, the heatmap is used to filter out pixels below a 

certain threshold. The skimage package function “measure.label” is used. The 

function checks to see if any pixels are “neighbors,” meaning they are touching 

pixels, and groups neighboring pixels together based on that. It returns coordinates 

for a bounding box, using the extrema’s of the pixel grouping to define the box 

points.  
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Image example of connectivity from Skimage 

  

Any grouping of pixels smaller than 3000 pixels was filtered out. For 

reference, the total pixel count of a 640 by 640 image is 409,600 pixels. For this to 

be accurate, the assumption is made that grouping of pixels less than 0.75% of the 

image are safe to ignore. The filtered bounding boxes from measure.label are 

returned for extraction of the pathology slide. Below is a visual representation of 

the process: 

This is an example of an input image: 
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Here is the shown image being processed: 

 

 Output resulted crop: 
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Code 

Below is the most relevant sections of code from the overview: 

Training Image transformations: 

 1. transform = transforms.Compose([ 
 2.     transforms.Resize((640, 640)), 
 3.     transforms.RandomHorizontalFlip(p=0.5), 
 4.     transforms.RandomInvert(p=.5), 
 5.     transforms.RandomRotation(degrees=(-15, 15)), 
 6.     transforms.GaussianBlur(15), 
 7.     transforms.ColorJitter(), 
 8.     transforms.ToTensor(), 
 9.     transforms.Normalize(mean=[0.485, 0.456, 0.406], 
10.                          std=[0.229, 0.224, 0.225]), 
11. ]) 
12.   

 

 

 

Preprocess transformations: 

 

 1.     preprocess = transforms.Compose([ 
 2.         # Resize to match the model's input size 
 3.         transforms.Resize((640, 640)), 
 4.         transforms.Pad(30), 
 5.         transforms.Resize((640, 640)), 
 6.         transforms.ToTensor(),           # Convert to tensor 
 7.         transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]), 
 8.   
 9.     ]) 
10.   
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Training loop: 

 1. num_epochs = 13 
 2. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
 3. model = model.to(device) 
 4. best = 1000000000000000000 
 5. # Training loop 
 6. for epoch in range(num_epochs): 
 7.     model.train() 
 8.     total_loss = 0.0  # Accumulate the loss across batches 
 9.     for images, masks in train_loader: 
10.         images, masks = images.to(device), masks.to(device) 
11.         masks = masks.long() 
12.         # Zero the gradients 
13.         optimizer.zero_grad() 
14.   
15.         # Forward pass 
16.         outputs = model(images) 
17.   
18.         # Compute the loss 
19.         loss = criterion(outputs, masks) 
20.   
21.         # Backpropagation 
22.         loss.backward() 
23.   
24.         # Update weights 
25.         optimizer.step() 
26.   
27.         # Accumulate the loss for this batch 
28.         total_loss += loss.item() 
29.   
30.     # Calculate the average loss for the epoch 
31.     avg_loss = total_loss / len(train_loader) 
32.   
33.     # Validation loop 
34.     model.eval() 
35.     total_val_loss = 0.0 
36.     with torch.no_grad(): 
37.         for images, masks in valid_loader: 
38.             images, masks = images.to(device), masks.to(device) 
39.             masks = masks.long() 
40.             # Forward pass 
41.             outputs = model(images) 
42.   
43.             # Compute the validation loss 
44.             val_loss = criterion(outputs, masks) 
45.             total_val_loss += val_loss.item() 
46.   
47.     # Calculate the average validation loss over all validation batches 
48.     avg_val_loss = total_val_loss / len(valid_loader) 
49.   
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Model class: 

 1. class SegmentationModel(nn.Module): 
 2.     def __init__(self, num_classes): 
 3.         super(SegmentationModel, self).__init__() 
 4.         # Load a pre-trained ResNet-50 model 
 5.         self.resnet50 = models.resnet50(pretrained=True) 
 6.          
 7.         # Remove the classification layer (fully connected layer) 
 8.         self.backbone = nn.Sequential(*list(self.resnet50.children())[:-2]) 
 9.          
10.         # Define the segmentation head 
11.         self.segmentation_head = nn.Sequential( 
12.             nn.Conv2d(2048, 512, kernel_size=3, padding=1), 
13.             nn.ReLU(inplace=True), 
14.             nn.ConvTranspose2d(512, num_classes, kernel_size=32, stride=32)  # Upsample to 
640x640 
15.         ) 
16.      
17.     def forward(self, x): 
18.         # Forward pass through the backbone 
19.         x = self.backbone(x) 
20.          
21.         # Forward pass through the segmentation head 
22.         x = self.segmentation_head(x) 
23.          
24.         return x 
25.   

 

Heatmap filtering and bounding: 

 

 1.     # Apply thresholding to identify high-certainty pixels 
 2.     high_certainty_pixels = (heatmap <= threshold) 
 3.   
 4.     # Use connected component analysis to find clusters of high-certainty pixels 
 5.     labels, num_features = measure.label( 
 6.         high_certainty_pixels, connectivity=2, return_num=True) 
 7.   
 8.     # Calculate bounding boxes for each dense section 
 9.     bounding_boxes = [] 
10.     for i in range(1, num_features + 1): 
11.         dense_section_indices = np.argwhere(labels == i) 
12.         min_row, min_col = np.min(dense_section_indices, axis=0) 
13.         max_row, max_col = np.max(dense_section_indices, axis=0) 
14.         if (max_row - min_row) * (max_col - min_col) >= 2500: 
15.             bounding_box = (min_row, min_col, max_row, max_col) 
16.             bounding_boxes.append(bounding_box) 
17.   
18.     return bounding_boxes 
19.   
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Cropping: 

     1. resolution_ratio_x = (640 / 576) * (int(frame.size[0]) / 640) 
 2.     resolution_ratio_y = (640 / 576) * (int(frame.size[1]) / 640) 
 3.     for box in boxes: 
 4.         section_image = frame.crop( 
 5.             ( 
 6.                 int(box[1] * resolution_ratio_x), 
 7.                 int(box[0] * resolution_ratio_y), 
 8.                 int(box[3] * resolution_ratio_x), 
 9.                 int(box[2] * resolution_ratio_y), 
10.             ) 
11.         ) 
12.         output_image.paste( 
13.             section_image, 
14.             ( 
15.                 int(box[1] * resolution_ratio_x), 
16.                 int(box[0] * resolution_ratio_y), 
17.                 int(box[3] * resolution_ratio_x), 
18.                 int(box[2] * resolution_ratio_y), 
19.             ) 
20.         ) 
21.     print("output image") 
22.     output_image.save("./results/cropped/cropped_" + str(count) + ".png") 
23.   

 

Masking images: 

 

 1. def get_masks(folder_path): 
 2.     text_file_names = [] 
 3.     # Ensure the folder path exists 
 4.     if not os.path.exists(folder_path): 
 5.         print("doesnt exist") 
 6.         return text_file_names 
 7.   
 8.     # Iterate through each file in the folder 
 9.     for filename in os.listdir(folder_path): 
10.         file_path = os.path.join(folder_path, filename) 
11.         if os.path.isfile(file_path) and filename.endswith('.txt'): 
12.             text_file_names.append(filename) 
13.   
14.     image_width = 640 
15.     image_height = 640 
16.     all_masks = {} 
17.     for text_file in text_file_names: 
18.         f=open(folder_path+'/'+text_file, "r") 
19.         x = f.read().splitlines() 
20.   
21.         mask = np.zeros((image_height, image_width), dtype=np.uint8) 
22.   
23.         all_masks[text_file[:-3]+"jpg"] = mask 
24.     return all_masks 
25.   
26.   
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Applying model to images: 

 

 1. model = SegmentationModel(2) 
 2. model.load_state_dict(torch.load('best.pth')) 
 3.   
 4. folder_path = './dataset/test/images3' 
 5. i = 0 
 6. # Iterate through each file in the folder 
 7. for filename in os.listdir(folder_path): 
 8.     file_path = os.path.join(folder_path, filename) 
 9.     if os.path.isfile(file_path) and filename.endswith('.jpg'): 
10.         # Load and preprocess the input image (replace 'input_image.jpg' with the actual 
path) 
11.         input_image_path = folder_path+'/'+filename 
12.         input_image = Image.open(input_image_path) 
13.          
14.         infer(model, input_image, i) 
15.         i+=1 
16.         print(datetime.now()-now) 
17.         now = datetime.now() 
18.   
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Turning code into CoreML Model: 

 1. # Load the PyTorch model 
 2. model = SegmentationModel(2) 
 3. model.load_state_dict(torch.load("best.pth", map_location=torch.device("cpu"))) 
 4.   
 5. # Dummy input - adjust according to your model input shape 
 6. input_batch = torch.randn(1, 3, 640, 640) 
 7.   
 8. preprocess = transforms.Compose( 
 9.     [ 
10.         # Resize to match the model's input size 
11.         transforms.Resize((640, 640)), 
12.         transforms.Pad(30), 
13.         transforms.Resize((640, 640)), 
14.         transforms.ToTensor(),  # Convert to tensor 
15.         # transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]), 
16.     ] 
17. ) 
18.   
19. # Trace the model 
20. trace = torch.jit.trace(model, input_batch) 
21.   
22.   
23.   
24. mlmodel = ct.convert( 
25.     trace, 
26.     inputs=[ 
27.         ct.ImageType(name="image", 
28.             shape=(1, 3, 640, 640) 
29.         ) 
30.     ], 
31.     minimum_deployment_target=ct.target.macOS13, 
32. ) 
33.   
34. mlmodel.save("SegmentationModel_no_metadata.mlpackage") 
35.   
36. mlmodel = ct.models.MLModel("SegmentationModel_no_metadata.mlpackage") 
37.   
38. labels_json = {"labels": ["pathology_slide", "null"]} 
39.   
40. mlmodel.user_defined_metadata["com.apple.coreml.model.preview.type"] = "imageSegmenter" 
41. mlmodel.user_defined_metadata["com.apple.coreml.model.preview.params"] = json.dumps( 
42.     labels_json 
43. ) 
44.   
45. mlmodel.save("SegmentationModel_with_metadata.mlpackage") 
46.   
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Model class tuned for CoreML: 

 

 1. class SegmentationModel(nn.Module): 
 2.     def __init__(self, num_classes): 
 3.         super(SegmentationModel, self).__init__() 
 4.         # Load a pre-trained ResNet-50 model 
 5.         self.resnet50 = models.resnet50(pretrained=True) 
 6.          
 7.         # Remove the classification layer (fully connected layer) 
 8.         self.backbone = nn.Sequential(*list(self.resnet50.children())[:-2]) 
 9.          
10.         # Define the segmentation head 
11.         self.segmentation_head = nn.Sequential( 
12.             nn.Conv2d(2048, 512, kernel_size=3, padding=1), 
13.             nn.ReLU(inplace=True), 
14.             nn.ConvTranspose2d(512, num_classes, kernel_size=32, stride=32)  # Upsample to 
640x640 
15.         ) 
16.      
17.     def forward(self, x): 
18.         # Forward pass through the backbone 
19.         x = self.backbone(x) 
20.          
21.         # Forward pass through the segmentation head 
22.         x = self.segmentation_head(x) 
23.          
24.         return x 
25.   
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Experimentation  

 On the path of the making a final product, the model had undergone 

experimentation and changes. The first large change was switching from YoloV7 to 

ResNet-50 backbone. The first iteration had used YoloV7 and was able to segment 

images, but it was found that the model architecture had a hard time adapting to 

real world pictures. Compared to ResNet-50 backbone, it picked up a significant 

amount of noise from slight lighting changes and had a hard time being trained.  

For deciding on the transformations of the training image preprocessing, 

various testing was conducted. At the beginning, only geometric transformations 

were applied, but this was quickly found to be incorrect, and more transformations 

were implemented. A normalization transformation was introduced, and the values 

for it were borrowed from ImageNet’s standard. The Blur, Jitter, and Invert 

transformations were slowly introduced by testing a small number of epochs using 

varying image transformations from PyTorch’s library. 

Deciding on the patching process was the most rigorous. Before properly 

patching the image, the first approach was to truncate the image given a threshold 

for the heatmap. This was found to be too simple and unable to produce notable 

results at all. The second attempt was implementing edge detection on the area 

above a certain threshold to extract the pathology slide. While this approach could 

extract the slide, it was inconsistent with its results since some slides could be 
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cleanly split in between, and offered no robustness in filtering out noisy results from 

the model. The next approach was checking each pixel to find nearest neighbors. 

This gave mixed results and was computationally expensive. Its concept is very 

similar to the final application using skimage, but the simply written approach was 

significantly less consistent and more resource demanding.  

The model consistently finds excess white space to be part of an extracted 

pathology slide, and most troublingly around the border of the entire image. 

Padding was introduced here to give a buffer around the image, and its removed 

after being fed to the model. The primary concern here was a loss of resolution, but 

for the final cropped output the original photo is referenced to ensure minimal loss 

of data during extraction.  

Applying a thresholding value to the heatmap was introduced after using 

normalization for preprocessing, as ensured the heatmap would stick within a more 

consistent range. This approach, while rudimentary, is effective enough to filter out 

a majority of the image before applying the patching techniques.  

An attempt was made to identify sections based on how pink and blue they 

might be. H&E pathology slides are consistent in their coloring, with the 

Hematoxylin and Eosin always dyeing in their same shades. This did not go very 

far though, as even though H&E slides themselves are very consistent, the other 

factors in a photo, such as lighting and contrast, vary significantly enough to make 
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it difficult to extract information purely based on color. The goal was the normalize 

the image, and then convert it to a CIELAB color space, where each pixel is given 

LAB values. L values represent lighting, A values represent red/green hues, and B 

represent the yellow/blue hues. A and B channels were used to define a pink hue 

range found in H&E slides, but the results were inconsistent. 
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Results 
 Below is the graphed loss from training: 

 

 Below is the time analysis of the program. In total, it takes around 11 

seconds to apply the model. Around 6 of those seconds is loading the weights, and 

with the model already loaded, it takes 4-5 seconds to apply patching and save the 

image.  
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Here are examples of results from the final test set: 
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Conclusion 

 The goal was to create a model capable of segmenting pathology slides 

from photos. The created model can consistently identify a pathology slide given a 

reasonable setting and extract it. It’s efficient enough to be applied on multiple 

platforms with reasonable run-time.  

 There are a few cases where improvements are needed. When there is 

more than one pathology slide within the view, if they are not distinctly separated 

by a non-white space, the model will combine them into one. This is a more novel 

case as it’s not often that two slides would sit next to each other, but it is a case to 

keep in mind. 

 The second case is when the slide is surrounded by bodies of text. Small 

sections of nearby text can be confused as part of a slide. A dark shade of a slide 

is similar to the shade of normal text, and in order to eliminate this more thorough 

bounding must be considered. 

 Lastly, testing on more mobile devices in required. In this project, only 

iPhone 12 was tested to run the model. Using Apples CoreML package, the model 

was ported to work on Apple iPhones. In theory the ported model should be able to 

function on all Apple platforms. Android was not tested though, and the platform 

should be considered. The concept of tracing a model for Core ML and PyTorch 
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Mobile for Android is the same, implying that the functionality would carry over to 

Android, but more proper testing should be done. 
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Future Works 
 For future improvements, there should be more rigorous bounding, testing of 

various other backbones, and better frameworks for other platforms. For the 

bounding, the current implementation does not guarantee that there will be no 

overlap from nearby objects. An alternative approach to this would be to add more 

vertices to the bounding. More vertices would allow for much more accurate 

bounding, by ensuring that the object is more properly outlined.  

 There are a multitude of other backbones that could be used for testing. 

While ResNet-50 was able to produce acceptable results, it is nearing a decade old 

and newer models may be able to produce better results.  

 Implementations were tested on a Raspberry Pi, Jetson Nano, and iPhone. 

While they were able to run across these platforms, it was done in the same 

fashion as a desktop, and not utilizing the uniqueness of the different platforms. 

Identifying strengths that could be applied to this project and leveraging them on 

these platforms could provide more thorough coverage.  

 Other implementations of medical imagery image segmentation can also be 

considered. There are other forms of medical imagery that have similar shape and 

consistency to pathological slides. An example of this would be 
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immunohistochemistry images:

 

Immunohistochemistry Techniques, Strengths, Limitations and Applications  

(Verma 2024) 

There are a many medical images that are loosely similar to pathology slides in 

terms of their physical attributes that could be considered for segmentation and 

labeling. This kind of implementation would require new datasets for each type of 

imaging and training on the new types. 
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