
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

Computer Science and Engineering Theses Computer Science and Engineering Department

Spring 2024

Pathology Slide Segmentation Pathology Slide Segmentation

Mohamed Mohamed
University of Texas at Arlington

Follow this and additional works at: https://mavmatrix.uta.edu/cse_theses

 Part of the Other Engineering Commons

Recommended Citation Recommended Citation
Mohamed, Mohamed, "Pathology Slide Segmentation" (2024). Computer Science and Engineering
Theses. 8.
https://mavmatrix.uta.edu/cse_theses/8

This Thesis is brought to you for free and open access by the Computer Science and Engineering Department at
MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Theses by an authorized
administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu,
vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_theses
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_theses?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/315?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_theses/8?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Pathology Slide Segmentation

By

Mohamed Mohamed

Masters Thesis for the University of Texas At Arlington

May 2024

Supervising Committee:

Christopher McMurrough

Chris Conly

Shawn Gieser

Acknowledgements

 I would like to acknowledge Dr. Luber and his lab for help with this thesis.

Contents
Introduction .. 1

Inspiration .. 3

Background .. 5

H&E Pathology slides: .. 5

Image Segmentation: ... 7

Core ML .. 10

Related Works ... 11

Model Overview .. 17

Code .. 23

Experimentation .. 30

Results ... 33

Conclusion ... 35

Future Works .. 37

Works Cited .. 39

Abstract
The goal of this project was to create an image segmentation model that would

extract an image of H&E pathology slides from real life scenarios. This was a part

of a project that required the extraction of an image, querying of the image, and

displaying the results. The baselines of the model were to be efficient, run on

mobile devices, and be able to work with cameras of varying resolutions.

1

Introduction

Medical imagery is an established, age-old method for analyzing the human

body. Many have been established well before current times and continue to

improve with use of newer tools coming out today. One of these techniques to

prepare tissue samples is H&E staining.

Like most things in the medical field, it has been rigorously tested to ensure

its efficiency and reliability. Staining involves dyeing a part of human tissue to view

under a microscope. It was first introduced in the 1800s and has been a

cornerstone in the field of histopathology since its inception.

The way these medical images are interacted with is the similar to as it was

were from back in the day. It involves a doctor sitting down and manually reviewing

slides, basing their decisions off experience from seeing slides. But, there are new

improvements being made today involving computer technologies.

Implementations of image segmentation have been seen on digital pathology

slides to diagnose, or label, images of pathology slides. There are similar

techniques being introduced in other adjacent fields, such as image segmentation

in CT scans to isolate structures, or in ultrasound imaging for detecting

inconsistencies in the body. Applying these newer techniques is a fast growing field

for all things related to imaging.

2

The goal of this project was to design and implement a model to assist in

extracting medical imagery for analysis. The model would give physicians an

efficient tool to quickly extract images of pathology slides from real life scenarios to

improve intractability through the diagnosis processes.

3

Inspiration

 This project was inspired by a doctor’s request for a pathology slide search

implementation. The objective was to be able to quickly search given pathology

slides and display the search results in an interactable manner.

The pathology slide image segmentation model retrieves a picture of the

slide and sends the extracted image to a multimodal search engine. The extracted

image would be embedded into a latent space and searched across other

pathology slides. Finally, the result would be sent over to a computer for imaging.

This paper will focus on the initial stage: The development of the image

segmentation model. The baseline for the model was to extract the pathology

slides from a camera. A simple example would be a printout picture of a slide lying

on a table.

Example taken from data set

4

 The overall goal is to create a seamless interaction for on-the-field

physicians to easily search given pathology slides in various real-world settings.

Physicians often spend significant time in front of pathology slides when attempting

to diagnose patients. Given a consistent and seamless approach to searching and

displaying pathology slides, it would aid in comparing patient data with stored

references to give a diagnostic in a timely fashion.

5

Background

H&E Pathology slides:
 As a medical procedure, doctors can order a patient to undergo a biopsy,

where a cut of human tissue is extracted and preserved. This tissue is sent to be

examined by a specialist, namely a pathologist. To view these thinly cut tissues, it’s

not enough to simply place it under a microscope. To mark notable sections of the

tissue for pathologists, who are specialists that analyze pathology slides, the tissue

undergoes processing before review. These processes vary, but for this specific

paper the target is hematoxylin-and-eosin-stained slides, which are also known as

H&E slides.

 H&E slides are the most common and general kind of pathology slides.

They are a baseline for pathology and are able to consistently provide info on the

morphology of tissue. The process of creating an H&E slide involves dyeing the

tissue with Hematoxylin and Eosin stains to bring color in the morphology of the

slide. Simply put, Hematoxylin will dye the cell nuclei blue, and the Eosin will dye

the cytoplasm, extracellular matrix, and other structures various shades of pink.

The results of H&E staining produce pathology slides that are dyed and

captured in very high resolution. It’s common that a single image to be multiple

6

gigabytes large, resulting in an image with stains that allow pathologists to analyze

the morphology of the tissue at a microscopic level.

The results of H&E slides are foundational to the field of pathology, as

pathologists study these kinds of slides to identify subtle changes and patterns

across tissues. The results of these slides are directly used in diagnosing patients

with various medical conditions. The target audience of this project would be

physicians who are frequently referencing these pathology slides and would need

to reference different slides during diagnosis for results.

Examples of H&E Pathology slide from the Dryad dataset

7

Image Segmentation:

 To enable computers to perceive the real world, computers have had

sensors attached to them and are then given the ability to analyze surroundings.

Cameras have historically been used as a consistent sensor to stream video input

data to computers. This field study, aptly named computer vision (or shorthanded

to CV) focuses on creating systems to derive information from visual information.

The subsection of this field implemented in this paper is image segmentation.

 Image segmentation put plainly is as the name implies, a way to segment an

image. While for humans it’s natural to perceive objects within a field of view as

individual, for machines it’s a much harder task to differentiate objects within a view

as individual. The goal of image segmentation is to correctly separate groups of

pixels within an image, partitioning them into discrete objects.

 The goal of this project was to partition an H&E pathology slides from its

surroundings. To achieve this, an image segmentation model was created with the

focus of segmenting specifically the pathology slide and grouping anything not

related as junk data.

The model used in this project was not created from scratch, and a

backbone was implemented to accelerate the training process. A backbone is a

pretrained foundational architecture that contains pretrained weights and balances.

The backbone only serves as a general-purpose structure for models and must be

built upon for application in more specific use cases.

8

The chosen backbone model was ResNet-50, which is a popular

Convolution Neural Network architecture. The model choice was decided using the

2022 paper “Backbones-Review: Feature Extraction Networks for Deep Learning

and Deep Reinforcement Learning Approaches” by Omar Elharroussa, Younes

Akbaria , Noor Almaadeeda and Somaya Al-Maadeeda. They tested a multitude of

model backbones and across the board ResNet-50 scored consistently well.

Image of ResNet 50 Model Architecture

For training the image segmentation model, image masks were

implemented. An image mask is an overlayed image with labeled sections, marking

where an object is. In this case, the image masks were not full sized images but

rather pixel value points of where the object, in this case pathology slide, was

located inside of the image.

9

Image and corresponding mask representation

10

Core ML

 For application on mobile devices, there are two target platforms: Apple and

Android mobile phones. In todays age it is realistic to say that most working adults,

notable here physicians, will have a cellular device. This gives a consistent

baseline to work towards for the real-world application, which is to be able to run

on modern smartphones.

 For usage on Apple smartphones, and all Apple platforms, PyTorch models

need to be converted into Core ML models. Core ML is Apples proprietary machine

learning framework which is used for efficiently running models on Apple devices.

Its meant to serve as a standard for their devices, and supports model formats

from popular model libraries such as PyTorch, TensorFlow, etc.

 In this project, the model is converted to an Core ML model for usage on

Apple devices. This process includes tracing the model and applying it in a Swift

framework to run the image segmentation.

 Tracing a model, in the context of Core ML, is a 1-to-1 copying of a non-

Core ML model into a Core ML model. The output Core ML model is able to be ran

on any updated Apple device, meaning support for notably Apple smartphones

here. The process is inconsistent in its completeness, and some PyTorch layers

are not supported. An example would be PyTorch’s argmax function being

supported by Core ML tracing but its argmin function being unsupported.

11

Related Works
 As mentioned in the introduction, there are a lot of related works growing in

the field of medical imaging. First and foremost, the most related working is image

segmentation of pathology slides. This form of segmentation is applied directly to

WSI (whole slide imaging) slides. The example being mentioned in this paper will

be from the research article “A generalized deep learning framework for whole-

slide image segmentation and analysis” by Mahendra Khened, Avinash Kori, Haran

Rajkumar, Ganapathy Krishnamurthi & Balaji Srinivasan.

 To being their training process, an approximate mask is created for the

tissue sections of the WSI images. The goal of this is to remove unnecessary, non-

tissue area from the image before being fed to the model. By removing the

background, it allows for higher accuracy results with lower computational costs.

Training on just the tissue sample area will avoid confusing the model with

unrelated white space. The computational costs are lowered alongside this since

there is physical less area to input. This is significant because the WSI images are

massive, and the white space surrounding tissue can count up to millions of pixels.

 These WSI images are large in size, with the paper mentioning that their

typical WSI image is 80,000 x 60,000 pixels. This is the nature of most WSI images,

as the resolution needs to be microscopic for physicians’ use. The full resolution

allows them to deeply understand the nuclei and cell structure of each patient’s

tissue sample.

12

 To deal with these massive images, the researchers take the

approach of patching the WSI images. The patches area is decided using a lower

resolution image, based on the area of the image masks, and then patched from

the full resolution image. Combining the masking with the patching allows for the

patches to extract only the most relevant areas of the tissue, and completely

bypassing any whitespace. This approach yields to consistent and high information

patches. The patches are split into cancerous and non-cancerous patches

depending on whether there is any cancerous pixels within a patch. The threshold

for being labeled cancerous is a single cancerous pixel.

 Preprocessing the patches with image augmentation is also introduced. The

images are applied with augmentations such as Gaussian Blur and flips along an

axis. Color augmentation is also utilized, with example applications being changes

to brightness, contrast, and hue.

 Tumorous regions were found to be a very small section of section of each

WSI image. This is because WSI images are massive as explained before, a single

label cannot properly classify it when being used for training data. A human tissue

sample can is labeled as cancerous if any amount of cancer is found, even if

sections of the tissue sample are completely cancer free. This approach is fine in

the real world since that implication is understood by physicians, but corrections

need to be made when using the images as training data, especially so when data

is being patched from slides into cancerous and non-cancerous patches. The

approach taken to avoid class imbalance of cancerous and non-cancerous data

13

was to use a hybrid loss function. The hybrid loss function utilizes cross-entropy

loss and “a loss function based on the Dice overlap coefficient.” Loss is a way to

represent the amount of error, and using functions to minimize loss leads to

accurate models. The first loss used here is cross-entropy, which is a logarithmic

based loss function. The formula for cross-entropy is:

H(P,G) = -∑ p(x) log(g(x))

where P is the target probability distribution of x, G is the models outputted

distribution of x, and x is the object. In this case, x would be the tissue patch

extracted from a WSI image. Cross-entropy is a well-established loss function for

classification tasks, and is a good pick here since the model is attempting to

classify sections of WSI images as cancerous and non-cancerous The other

mentioned loss function utilizes the “Sørensen–Dice coefficient”. The formula for it

is:

 2 * |A ∩ B| / (|A| + |B|)

where A and B are two sets. A ∩ B, or A union B, is a representation of the overlap

between the two sets. The |A ∩ B| is the count of elements that overlap between A

and B. |A| is the count of elements inside set A, and |B| is similarly the count of

elements inside set B. |A| + |B| is the combined count of elements inside set A and

B. |A ∩ B| is multiplied by two because each overlap is counted once, but the

Sørensen–Dice coefficient is finding the overlap percentage between the combined

sets. By multiplying |A ∩ B| by two, it properly represents the percentage of overlap

between two sets instead of one. The exact cross-entropy equation used in this

14

situation is:

𝐶𝐿 = ∑(𝑔𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑔𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑁

𝑖

And the dice loss equation used is:

 𝐷𝐿 = 1 −
2∑ ⬚𝑁

𝑖 𝑝𝑖𝑔𝑖

∑ ⬚𝑁
𝑖 𝑝𝑖

2+∑ ⬚𝑁
𝑖 𝑔𝑖

2

Finally, the combined equation for both losses is:

𝐿𝑜𝑠𝑠 = 𝛼 ∗ 𝐶𝐿 + 𝛽 ∗ 𝐷𝐿𝐵𝐺 + 𝛾 ∗ 𝐷𝐿𝐹𝐺

where CL is cross-entropy loss and DL is dice loss. DLFG represents the dice loss

of the foreground pixels that relate to tumorous pixels and DLBG is of the

background pixels that relate to non-tumorous pixels. The result is a formula

capable of capturing mistakes made by the overall classification, the classification

of tumorous pixels, and non-tumorous pixels respectively. This also solves the

imbalance issue by separating the loss values of tumorous and non-tumorous

pixels, ensuring that one won’t imbalance the other.

 The approach taken for creating the inference model involves using three

different backbones. There are three combined models used to produce the output.

U-Net with DenseNet-121 as the backbone encoder, U-Net with Inception-ResNet-

V2 as the backbone encoder, and DeeplabV3Plus with Xception network as the

backbone. Their results showed that “using an ensemble of three different

networks provided superior segmentation performance compared to using the

15

networks individually,” meaning that the combined outputs of the three models was

better than the output of one individual model.

 For inference, the preprocessing steps are different than the ones for

training. During patching, there is a set overlap on each patch for melding

consecutive patches. It was found that 50% between neighboring patches was a

balanced amount for “accuracy and computational efficiency.” The patch size was

also increased by a factor of 4 for inference compared to training for greater

accuracy.

 This ties into the work in this paper because it’s a form of image

segmentation performed onto a pathology slide. Their goal was to label sections of

pathology slides as cancerous or non-cancerous. The WSI images of pathology

slide were patched, and then inference was performed on the patches to generate

heatmaps of the tissue. The inference heatmap patches had 50% overlap with their

neighboring patches and were stitched together to create one overall image. The

end result is a heatmap with certain sections identified as cancerous tissue. This

uses a lot of similar fundamental concepts compared to the project in this paper,

but is still notably different.

 There is a difference between what is being segmented. In the described

work, the goal is to segment the cancerous tissue in a WSI image of a pathology

slide. This is an application leaning more towards clinical testing, it infers what is

cancerous and gives this suggestion to the user. On the other hand, the image

16

segmentation in this thesis paper does not involve labeling sections of a slide or

labeling the slide at all with a diagnosis. The objective is to segment an image of a

pathology slide itself and not apply any analysis to the data within the slide. The

form of segmentation is significantly different, and the objectives are as well.

17

Model Overview
 The overall program can be broken down into a few key steps. First, is

initialization of the model. The model used a ResNet-50 architecture as a

backbone with a segmentation head. To properly utilize ResNet-50, the last layers

were removed. This is because the last two layers of ResNet-50 are part of its fully

connected layer, which will not be needed here for a single object image

segmentation.

More detailed image of ResNet-50 Architecture

 The next step is to preprocess is to split the dataset into training and

validation images. The dataset of this project comprised of a public data set of

whole slide pathology slide images, photos of the same images printed onto paper,

and photos of a textbook with pathology slides on them. The photos were taken

using and iPhone 12 camera. For splitting the dataset, a 70-30 split of the first two

data sources, and the pictures of pathology slides on paper were saved for final

testing. All of these images had an attached image mask. For the images from the

18

Dryad dataset, entire image was the mask bounding area. This is because they

dataset consisted of only whole slide imaging (also known as WSI) of pathology

slides. This meant the entire image was truly a pathology slide. It should be noted

that small selection of the images did have inconsistencies in their scanning but

were kept in to be true to real life scenarios.

Writing on the bottom left Scanning mistake on top right

 The rest of the dataset was manually annotated with image masks.

19

Example of annotated masks, the area in the purple box represents the H&E slide

In total, the training and validation dataset consisted of 584 images of

traditional H&E WSI and 53 images taken from a phone camera and the test

dataset consisted of 20 images of WSI on paper.

After splitting the dataset, the next step would be training the dataset. All

images are preprocessed before being trained to improve accuracy. The images

are normalized, and have PyTorch’s random flip, invert, and rotation applied to

them. A Gaussian blur and color jitter and also applied.

The model is set to accept input and output of images at the resolution of

640x640. This was based on the second section of this program, which was the

image search of the pathology slide. The input resolution of the search was

640x640, so a larger resolution would end up as lost information, and a smaller

resolution would hinder the search.

The training function utilized masks for measuring accuracy. Everything

inside of the image masks bounding area was labeled as a pathology slide and

everything outside of it was grouped together. 100 epochs were used for training,

with the epochs containing the final and best results being saved.

20

Following training is the function implementing the model. The segmentation

function consists of a few parts. The steps were preprocessing, running the model

itself, identifying possible noise, and returning the final images.

The first step of the preprocessing is adding padding to the input image.

This is done here because it was found the mode was disproportionate towards

white bounding areas found within input. The theory behind this is that because the

WSI dataset consistently had a bounding white space on each image, it made the

model flag false positives. By adding a bounding area and later removing it, the

model performed much better on real world scenarios. The image is then resized to

640,640 resolution with the padding to be inputted into the model.

The next step was removing possible noise received from the model. The

received output is converted into a heatmap, and sections of certain density are

grouped together.

For extracting dense areas, the heatmap is used to filter out pixels below a

certain threshold. The skimage package function “measure.label” is used. The

function checks to see if any pixels are “neighbors,” meaning they are touching

pixels, and groups neighboring pixels together based on that. It returns coordinates

for a bounding box, using the extrema’s of the pixel grouping to define the box

points.

21

Image example of connectivity from Skimage

Any grouping of pixels smaller than 3000 pixels was filtered out. For

reference, the total pixel count of a 640 by 640 image is 409,600 pixels. For this to

be accurate, the assumption is made that grouping of pixels less than 0.75% of the

image are safe to ignore. The filtered bounding boxes from measure.label are

returned for extraction of the pathology slide. Below is a visual representation of

the process:

This is an example of an input image:

22

Here is the shown image being processed:

 Output resulted crop:

23

Code

Below is the most relevant sections of code from the overview:

Training Image transformations:

 1. transform = transforms.Compose([
 2. transforms.Resize((640, 640)),
 3. transforms.RandomHorizontalFlip(p=0.5),
 4. transforms.RandomInvert(p=.5),
 5. transforms.RandomRotation(degrees=(-15, 15)),
 6. transforms.GaussianBlur(15),
 7. transforms.ColorJitter(),
 8. transforms.ToTensor(),
 9. transforms.Normalize(mean=[0.485, 0.456, 0.406],
10. std=[0.229, 0.224, 0.225]),
11.])
12.

Preprocess transformations:

 1. preprocess = transforms.Compose([
 2. # Resize to match the model's input size
 3. transforms.Resize((640, 640)),
 4. transforms.Pad(30),
 5. transforms.Resize((640, 640)),
 6. transforms.ToTensor(), # Convert to tensor
 7. transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]),
 8.
 9.])
10.

24

Training loop:

 1. num_epochs = 13
 2. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 3. model = model.to(device)
 4. best = 1000000000000000000
 5. # Training loop
 6. for epoch in range(num_epochs):
 7. model.train()
 8. total_loss = 0.0 # Accumulate the loss across batches
 9. for images, masks in train_loader:
10. images, masks = images.to(device), masks.to(device)
11. masks = masks.long()
12. # Zero the gradients
13. optimizer.zero_grad()
14.
15. # Forward pass
16. outputs = model(images)
17.
18. # Compute the loss
19. loss = criterion(outputs, masks)
20.
21. # Backpropagation
22. loss.backward()
23.
24. # Update weights
25. optimizer.step()
26.
27. # Accumulate the loss for this batch
28. total_loss += loss.item()
29.
30. # Calculate the average loss for the epoch
31. avg_loss = total_loss / len(train_loader)
32.
33. # Validation loop
34. model.eval()
35. total_val_loss = 0.0
36. with torch.no_grad():
37. for images, masks in valid_loader:
38. images, masks = images.to(device), masks.to(device)
39. masks = masks.long()
40. # Forward pass
41. outputs = model(images)
42.
43. # Compute the validation loss
44. val_loss = criterion(outputs, masks)
45. total_val_loss += val_loss.item()
46.
47. # Calculate the average validation loss over all validation batches
48. avg_val_loss = total_val_loss / len(valid_loader)
49.

25

Model class:

 1. class SegmentationModel(nn.Module):
 2. def __init__(self, num_classes):
 3. super(SegmentationModel, self).__init__()
 4. # Load a pre-trained ResNet-50 model
 5. self.resnet50 = models.resnet50(pretrained=True)
 6.
 7. # Remove the classification layer (fully connected layer)
 8. self.backbone = nn.Sequential(*list(self.resnet50.children())[:-2])
 9.
10. # Define the segmentation head
11. self.segmentation_head = nn.Sequential(
12. nn.Conv2d(2048, 512, kernel_size=3, padding=1),
13. nn.ReLU(inplace=True),
14. nn.ConvTranspose2d(512, num_classes, kernel_size=32, stride=32) # Upsample to
640x640
15.)
16.
17. def forward(self, x):
18. # Forward pass through the backbone
19. x = self.backbone(x)
20.
21. # Forward pass through the segmentation head
22. x = self.segmentation_head(x)
23.
24. return x
25.

Heatmap filtering and bounding:

 1. # Apply thresholding to identify high-certainty pixels
 2. high_certainty_pixels = (heatmap <= threshold)
 3.
 4. # Use connected component analysis to find clusters of high-certainty pixels
 5. labels, num_features = measure.label(
 6. high_certainty_pixels, connectivity=2, return_num=True)
 7.
 8. # Calculate bounding boxes for each dense section
 9. bounding_boxes = []
10. for i in range(1, num_features + 1):
11. dense_section_indices = np.argwhere(labels == i)
12. min_row, min_col = np.min(dense_section_indices, axis=0)
13. max_row, max_col = np.max(dense_section_indices, axis=0)
14. if (max_row - min_row) * (max_col - min_col) >= 2500:
15. bounding_box = (min_row, min_col, max_row, max_col)
16. bounding_boxes.append(bounding_box)
17.
18. return bounding_boxes
19.

26

Cropping:

 1. resolution_ratio_x = (640 / 576) * (int(frame.size[0]) / 640)
 2. resolution_ratio_y = (640 / 576) * (int(frame.size[1]) / 640)
 3. for box in boxes:
 4. section_image = frame.crop(
 5. (
 6. int(box[1] * resolution_ratio_x),
 7. int(box[0] * resolution_ratio_y),
 8. int(box[3] * resolution_ratio_x),
 9. int(box[2] * resolution_ratio_y),
10.)
11.)
12. output_image.paste(
13. section_image,
14. (
15. int(box[1] * resolution_ratio_x),
16. int(box[0] * resolution_ratio_y),
17. int(box[3] * resolution_ratio_x),
18. int(box[2] * resolution_ratio_y),
19.)
20.)
21. print("output image")
22. output_image.save("./results/cropped/cropped_" + str(count) + ".png")
23.

Masking images:

 1. def get_masks(folder_path):
 2. text_file_names = []
 3. # Ensure the folder path exists
 4. if not os.path.exists(folder_path):
 5. print("doesnt exist")
 6. return text_file_names
 7.
 8. # Iterate through each file in the folder
 9. for filename in os.listdir(folder_path):
10. file_path = os.path.join(folder_path, filename)
11. if os.path.isfile(file_path) and filename.endswith('.txt'):
12. text_file_names.append(filename)
13.
14. image_width = 640
15. image_height = 640
16. all_masks = {}
17. for text_file in text_file_names:
18. f=open(folder_path+'/'+text_file, "r")
19. x = f.read().splitlines()
20.
21. mask = np.zeros((image_height, image_width), dtype=np.uint8)
22.
23. all_masks[text_file[:-3]+"jpg"] = mask
24. return all_masks
25.
26.

27

Applying model to images:

 1. model = SegmentationModel(2)
 2. model.load_state_dict(torch.load('best.pth'))
 3.
 4. folder_path = './dataset/test/images3'
 5. i = 0
 6. # Iterate through each file in the folder
 7. for filename in os.listdir(folder_path):
 8. file_path = os.path.join(folder_path, filename)
 9. if os.path.isfile(file_path) and filename.endswith('.jpg'):
10. # Load and preprocess the input image (replace 'input_image.jpg' with the actual
path)
11. input_image_path = folder_path+'/'+filename
12. input_image = Image.open(input_image_path)
13.
14. infer(model, input_image, i)
15. i+=1
16. print(datetime.now()-now)
17. now = datetime.now()
18.

28

Turning code into CoreML Model:

 1. # Load the PyTorch model
 2. model = SegmentationModel(2)
 3. model.load_state_dict(torch.load("best.pth", map_location=torch.device("cpu")))
 4.
 5. # Dummy input - adjust according to your model input shape
 6. input_batch = torch.randn(1, 3, 640, 640)
 7.
 8. preprocess = transforms.Compose(
 9. [
10. # Resize to match the model's input size
11. transforms.Resize((640, 640)),
12. transforms.Pad(30),
13. transforms.Resize((640, 640)),
14. transforms.ToTensor(), # Convert to tensor
15. # transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]),
16.]
17.)
18.
19. # Trace the model
20. trace = torch.jit.trace(model, input_batch)
21.
22.
23.
24. mlmodel = ct.convert(
25. trace,
26. inputs=[
27. ct.ImageType(name="image",
28. shape=(1, 3, 640, 640)
29.)
30.],
31. minimum_deployment_target=ct.target.macOS13,
32.)
33.
34. mlmodel.save("SegmentationModel_no_metadata.mlpackage")
35.
36. mlmodel = ct.models.MLModel("SegmentationModel_no_metadata.mlpackage")
37.
38. labels_json = {"labels": ["pathology_slide", "null"]}
39.
40. mlmodel.user_defined_metadata["com.apple.coreml.model.preview.type"] = "imageSegmenter"
41. mlmodel.user_defined_metadata["com.apple.coreml.model.preview.params"] = json.dumps(
42. labels_json
43.)
44.
45. mlmodel.save("SegmentationModel_with_metadata.mlpackage")
46.

29

Model class tuned for CoreML:

 1. class SegmentationModel(nn.Module):
 2. def __init__(self, num_classes):
 3. super(SegmentationModel, self).__init__()
 4. # Load a pre-trained ResNet-50 model
 5. self.resnet50 = models.resnet50(pretrained=True)
 6.
 7. # Remove the classification layer (fully connected layer)
 8. self.backbone = nn.Sequential(*list(self.resnet50.children())[:-2])
 9.
10. # Define the segmentation head
11. self.segmentation_head = nn.Sequential(
12. nn.Conv2d(2048, 512, kernel_size=3, padding=1),
13. nn.ReLU(inplace=True),
14. nn.ConvTranspose2d(512, num_classes, kernel_size=32, stride=32) # Upsample to
640x640
15.)
16.
17. def forward(self, x):
18. # Forward pass through the backbone
19. x = self.backbone(x)
20.
21. # Forward pass through the segmentation head
22. x = self.segmentation_head(x)
23.
24. return x
25.

30

Experimentation

 On the path of the making a final product, the model had undergone

experimentation and changes. The first large change was switching from YoloV7 to

ResNet-50 backbone. The first iteration had used YoloV7 and was able to segment

images, but it was found that the model architecture had a hard time adapting to

real world pictures. Compared to ResNet-50 backbone, it picked up a significant

amount of noise from slight lighting changes and had a hard time being trained.

For deciding on the transformations of the training image preprocessing,

various testing was conducted. At the beginning, only geometric transformations

were applied, but this was quickly found to be incorrect, and more transformations

were implemented. A normalization transformation was introduced, and the values

for it were borrowed from ImageNet’s standard. The Blur, Jitter, and Invert

transformations were slowly introduced by testing a small number of epochs using

varying image transformations from PyTorch’s library.

Deciding on the patching process was the most rigorous. Before properly

patching the image, the first approach was to truncate the image given a threshold

for the heatmap. This was found to be too simple and unable to produce notable

results at all. The second attempt was implementing edge detection on the area

above a certain threshold to extract the pathology slide. While this approach could

extract the slide, it was inconsistent with its results since some slides could be

31

cleanly split in between, and offered no robustness in filtering out noisy results from

the model. The next approach was checking each pixel to find nearest neighbors.

This gave mixed results and was computationally expensive. Its concept is very

similar to the final application using skimage, but the simply written approach was

significantly less consistent and more resource demanding.

The model consistently finds excess white space to be part of an extracted

pathology slide, and most troublingly around the border of the entire image.

Padding was introduced here to give a buffer around the image, and its removed

after being fed to the model. The primary concern here was a loss of resolution, but

for the final cropped output the original photo is referenced to ensure minimal loss

of data during extraction.

Applying a thresholding value to the heatmap was introduced after using

normalization for preprocessing, as ensured the heatmap would stick within a more

consistent range. This approach, while rudimentary, is effective enough to filter out

a majority of the image before applying the patching techniques.

An attempt was made to identify sections based on how pink and blue they

might be. H&E pathology slides are consistent in their coloring, with the

Hematoxylin and Eosin always dyeing in their same shades. This did not go very

far though, as even though H&E slides themselves are very consistent, the other

factors in a photo, such as lighting and contrast, vary significantly enough to make

32

it difficult to extract information purely based on color. The goal was the normalize

the image, and then convert it to a CIELAB color space, where each pixel is given

LAB values. L values represent lighting, A values represent red/green hues, and B

represent the yellow/blue hues. A and B channels were used to define a pink hue

range found in H&E slides, but the results were inconsistent.

33

Results
 Below is the graphed loss from training:

 Below is the time analysis of the program. In total, it takes around 11

seconds to apply the model. Around 6 of those seconds is loading the weights, and

with the model already loaded, it takes 4-5 seconds to apply patching and save the

image.

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

M
od

el
 L

os
s

Epoch Count

Model Loss

Test Loss Train Loss

34

Here are examples of results from the final test set:

35

Conclusion

 The goal was to create a model capable of segmenting pathology slides

from photos. The created model can consistently identify a pathology slide given a

reasonable setting and extract it. It’s efficient enough to be applied on multiple

platforms with reasonable run-time.

 There are a few cases where improvements are needed. When there is

more than one pathology slide within the view, if they are not distinctly separated

by a non-white space, the model will combine them into one. This is a more novel

case as it’s not often that two slides would sit next to each other, but it is a case to

keep in mind.

 The second case is when the slide is surrounded by bodies of text. Small

sections of nearby text can be confused as part of a slide. A dark shade of a slide

is similar to the shade of normal text, and in order to eliminate this more thorough

bounding must be considered.

 Lastly, testing on more mobile devices in required. In this project, only

iPhone 12 was tested to run the model. Using Apples CoreML package, the model

was ported to work on Apple iPhones. In theory the ported model should be able to

function on all Apple platforms. Android was not tested though, and the platform

should be considered. The concept of tracing a model for Core ML and PyTorch

36

Mobile for Android is the same, implying that the functionality would carry over to

Android, but more proper testing should be done.

37

Future Works
 For future improvements, there should be more rigorous bounding, testing of

various other backbones, and better frameworks for other platforms. For the

bounding, the current implementation does not guarantee that there will be no

overlap from nearby objects. An alternative approach to this would be to add more

vertices to the bounding. More vertices would allow for much more accurate

bounding, by ensuring that the object is more properly outlined.

 There are a multitude of other backbones that could be used for testing.

While ResNet-50 was able to produce acceptable results, it is nearing a decade old

and newer models may be able to produce better results.

 Implementations were tested on a Raspberry Pi, Jetson Nano, and iPhone.

While they were able to run across these platforms, it was done in the same

fashion as a desktop, and not utilizing the uniqueness of the different platforms.

Identifying strengths that could be applied to this project and leveraging them on

these platforms could provide more thorough coverage.

 Other implementations of medical imagery image segmentation can also be

considered. There are other forms of medical imagery that have similar shape and

consistency to pathological slides. An example of this would be

38

immunohistochemistry images:

Immunohistochemistry Techniques, Strengths, Limitations and Applications

(Verma 2024)

There are a many medical images that are loosely similar to pathology slides in

terms of their physical attributes that could be considered for segmentation and

labeling. This kind of implementation would require new datasets for each type of

imaging and training on the new types.

39

Works Cited
Haematoxylin & Eosin (H&E) Staining. 16 Dec. 2020,

https://www.cancer.ox.ac.uk/support/THL/HE-Staining.

“What Is Computer Vision? | IBM.” IBM, 20 Mar. 2024,

https://www.ibm.com/topics/computer-vision

“What Is Image Segmentation? | IBM.” IBM, 4 Mar. 2024,

https://www.ibm.com/topics/image-segmentation.

Elharrouss, Omar et al. “Backbones-Review: Feature Extraction Networks

for Deep Learning and Deep Reinforcement Learning Approaches.” ArXiv

abs/2206.08016 (2022): n. pag.https://arxiv.org/pdf/1512.03385

Mukherjee, Suvaditya. “The Annotated ResNet-50.” Towards Data Science,

18 Aug. 2022, https://towardsdatascience.com/the-annotated-resnet-50-

a6c536034758.

Rastogi, Aditi. “ResNet50.” Dev Genius, 14 Mar. 2022,

https://blog.devgenius.io/resnet50-6b42934db431.

Lathashreeharisha. “Dice Coefficient! What Is It?” Medium, 19 Feb. 2023,

https://medium.com/@lathashreeh/dice-coefficient-what-is-it-ff090ec97bda.

https://arxiv.org/pdf/1512.03385

40

Cruz-Roa, Angel et al. (2018). Data from: High-throughput adaptive

sampling for whole-slide histopathology image analysis (HASHI) via convolutional

neural networks: application to invasive breast cancer detection [Dataset]. Dryad.

https://doi.org/10.5061/dryad.1g2nt41

Angel. “High-Throughput Adaptive Sampling for Whole-Slide Histopathology

Image Analysis (HASHI) via Convolutional Neural Networks: Application to

Invasive Breast Cancer Detection.” PLOS ONE, 24 May 2018,

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196828.

J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A

large-scale hierarchical image database," 2009 IEEE Conference on Computer

Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:

10.1109/CVPR.2009.5206848.

Khened, M., Kori, A., Rajkumar, H. et al. A generalized deep learning

framework for whole-slide image segmentation and analysis. Sci Rep 11, 11579

(2021). https://doi.org/10.1038/s41598-021-90444-8

Brownlee, J. (2020, December 22). A gentle introduction to cross-entropy for

Machine Learning. MachineLearningMastery.com.

https://machinelearningmastery.com/cross-entropy-for-machine-learning

Verma, Aditi. “Immunohistochemistry Techniques, Strengths, Limitations

and Applications.” Analysis & Separations from Technology Networks, 5 July 2022,

https://machinelearningmastery.com/cross-entropy-for-machine-learning

41

http://www.technologynetworks.com/analysis/articles/immunohistochemistry-

techniques-strengths-limitations-and-applications-363107.

	Pathology Slide Segmentation
	Recommended Citation

	tmp.1715797732.pdf.THo2l

