
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2018 Spring Honors Capstone Projects Honors College

5-1-2018

GLOVELET GLOVELET

Arnav Garg

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2018

Recommended Citation Recommended Citation
Garg, Arnav, "GLOVELET" (2018). 2018 Spring Honors Capstone Projects. 5.
https://mavmatrix.uta.edu/honors_spring2018/5

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2018 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2018
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2018?utm_source=mavmatrix.uta.edu%2Fhonors_spring2018%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2018/5?utm_source=mavmatrix.uta.edu%2Fhonors_spring2018%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Arnav Garg 2018

All Rights Reserved

GLOVELET

by

ARNAV GARG

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

 iii

ACKNOWLEDGMENTS

I would like to thank my mentor, Dr. Christopher Conly, for guiding my team and

me through the entire development process and believing in our idea.

I am thankful to my teammates Joseph Tompkins, Ravindra Javadekar, Sushil Bista

and Prasoon Gautam for being great colleagues and putting great effort into this project

with me. They all played a crucial part in taking the project from the drawing board to the

prototype.

Last but not least, I would like to thank my parents, Girish and Richi Garg, for their

love and unwavering support over the years. They have sacrificed so much for me and I

owe my success to them

May 2, 2018

 iv

ABSTRACT

GLOVELET

Arnav Garg, B.S. Computer Science

The University of Texas at Arlington, 2018

Faculty Mentor: Christopher Conly

The traditional computer mouse is unable to provide as high a level of productivity

and efficiency in workflow for three-dimensional virtual objects as it provides for two-

dimensional virtual objects. With the rise in three-dimensional virtual objects in

Augmented and Virtual Reality technologies, the need for a more user-friendly and

convenient user interface device is now an inescapable necessity. ‘GloveLet’ is a wearable

glove that is designed to be used as a user interface device for three-dimensional as well as

two-dimensional object movements. It is conceptualized to be lightweight, comfortable and

able to be used in work for long periods of time. It has a minimalistic yet robust design. To

achieve maximum reliability and simplicity, it will normalize the data to best suit the user

and apply multiple filters to catch false negatives and false positives. This will allow fewer

possible points of failure in the design.

 v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... vii

Chapter

 1. INTRODUCTION ... 1

 2. PRELIMINARY RESEARCH .. 3

 3. DESIGN ... 5

 3.1 System Overview ... 6

 3.1.1 Hardware and Sensor Layer .. 7

 3.1.2 Computer Vision Layer... 7

 3.1.2.1 Hand Tracking Subsystem .. 8

 3.1.3 Event API Layer ... 9

 3.1.4 Application Layer ... 10

 3.2 System Data Flow .. 11

 4. DISCUSSION .. 14

 4.1 Sensors ... 15

 4.1.1 Flex Sensors .. 15

 4.1.2 Inertial Measurement Unit (IMU) ... 16

 5. CONCLUSION .. 18

 vi

Appendix

A. COMPUTER VISION TRACKING CODE .. 19

B. INITIAL AND FINAL DESIGN ... 25

REFERENCES .. 27

BIOGRAPHICAL INFORMATION ... 28

 vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 The Coordinate System of the Real World and the IMU 4

3.1 Gestures to Perform Standard Computer Mouse Functionality 5

3.2 GloveLet High Level System Architecture Diagram..................................... 6

3.3 GloveLet Hardware Sensors Layer .. 7

3.4 GloveLet Computer Vision Layer ... 8

3.5 Code Snippet for Hand Tracking ... 8

3.6 GloveLet Event API Layer .. 9

3.7 GloveLet Application Layer .. 10

3.8 GloveLet System Data Flow .. 11

4.1 Flex Sensor Variable Resistance Readings .. 15

4.2 Fusion Breakout BNO055 IMU ... 16

 1

CHAPTER 1

INTRODUCTION

Douglas Engelbart of Oregon State University developed the first computer mouse

in 1964 [1]. Since its invention, the mouse has been an integral part of the computer. With

time, several alternate forms of computer mouse have been created, adding additional

buttons or scrolls wheels, but no variations have been successful in providing an intuitive,

natural method of control at a low cost. During prolonged use of a standard computer

mouse, the user’s hand experiences stress. By allowing natural hand movements to control

the computer’s cursor action, ‘GloveLet’ has the potential to significantly reduce the stress

on an individual’s hand. ‘GloveLet’ allows a person to wirelessly control the mouse cursor

on the computer screen via a hand-tracking glove. It allows users to interface with a

computer from afar, without the need of a flat table-like surface. The traditional computer

mouse requires a flat surface where the optical sensors can depict the changes to determine

mouse movement on the screen [2]. ‘GloveLet’ can be used from a distance of four feet

from the user’s computer, where the hand is suspended in a floating environment, removing

excessive stress on the wrist. With GloveLet, users will be able to control user interactions

normally performed by a computer mouse, as well as provide new, convenient use cases

not previously possible with standard user interface devices.

The development team, named ‘Pied Pipers’, which consisted of Arnav Garg,

Joseph Tompkins, Prasoon Gautam, Sushil Bista and Ravindra Javadekar, aimed to create

a wireless two-dimensional and three-dimensional object tracking glove as a part of the

 2

Senior Design Project for the Bachelors of Science in Computer Science Program. The

motivation for Pied Pipers was to build a wearable glove that can replace the traditional

mouse with a more user-interactive and easy-to-use device. This would greatly enhance the

user experience and would allow users to use their hands to move objects, both two-

dimensional and three-dimensional, on the screen, thereby making the experience more

intuitive for younger and older adults. GloveLet was built to provide one-to-one mapping

between the movement of the cursor and the rotation of the virtual three-dimensional

objects on the screen to the movement and rotation of the wireless glove. The current

available solutions for computer mouse devices are not very intuitive for three-dimensional

data on the computer. We aim to get rid of the bulkiness and difficulty in use involved in

the devices currently available.

This design was developed from the ground up by the team and was designed to be

lightweight, comfortable, and able to be worn for long periods without creating any

discomfort. It was also ensured that the users should be able to switch freely between using

GloveLet and typing on the keyboard or even switching back to a computer mouse.

GloveLet is aimed at users who use computer technology on a regular basis and

wish to increase productivity and improve work flow. It will also provide a foundation for

a unique gaming interface device. My team and I aimed to make the glove affordable, user-

friendly, convenient and usable for a wide range of applications.

 3

CHAPTER 2

PRELIMINARY RESEARCH

The device we built aimed to replace the traditional computer mouse; therefore,

comfort, affordability and usability for a wide range of applications were accorded prime

importance. To achieve error-free operation of the device, research on known algorithms

for object(s) tracking in Computer Vision, Bluetooth communication for wireless data

transmission and Inertial Measurement Unit (IMU) sensor data analysis was conducted.

Bista and Javadekar researched on Bluetooth data transmission, Tompkins and Gautam

researched the analysis and interpretation of IMU sensor data, and I surveyed published

papers. Two relevant papers, titled “Tracking Color Objects in Real Time” and “A Noise

Reduction Method For IMU and Its Application on Handwriting Trajectory

Reconstruction”, gave us significant information about color-based object(s) tracking and

analysis and performance evaluation of data collected from the IMU sensor.

The paper “Tracking Color Objects in Real Time” by Vladimir Kravtchenko from

the University of British Columbia discussed a clustering method that used density and

spatial cues to cluster object pixels into separate objects. He proposed methods for

identifying objects from the neighboring video frame and predicting their future

movement. It provided details of a practical implementation of a tracking system based on

the proposed techniques. The tracking system implemented in the paper tracked colored

blobs. The notion of blobs as a representation for image features has a long history in

computer vision and has had many different mathematical definitions. The algorithm

 4

proposed in the paper used the pixel distribution information, namely density and spatial

cues, to cluster object pixels into separate objects/blobs. These separate objects were then

identified based on their previous history, i.e. position in the neighboring frames.

The paper titled “A Noise Reduction Method for IMU and Its Application on

Handwriting Trajectory Reconstruction” by the researchers at National Cheng Kung

University proposed a trajectory reconstruction method based on a low-cost IMU (Inertial

Measurement Unit), which is generally used in smartphones. In order to improve the

accuracy and precision of the IMU data, filtering methods were proposed to reduce high

and low frequency noises of the signal. Techniques for Attitude Estimation and Coordinate

Transformation were also discussed in the paper. Since the coordinate system of the IMU

is different from the coordinate system of the real world, the acceleration measured by the

accelerometer would be inconsistent with the acceleration of the real movement.

Figure 2.1: The Coordinate System of the Real World and the IMU [3]

 5

CHAPTER 3

DESIGN

GloveLet is designed to provide a one-to-one mapping of the movement of the

cursor and rotation of a virtual three-dimensional object to the movement and rotation of

the wireless glove. Minimal computation is done on the microcontroller on board the glove

unit. The majority of processing is performed on the computer running the user-end

application. The data from the glove is transferred to the user’s computer via Bluetooth

transmission.

Users can perform simple gestures in order to attain the same functionality

provided by a standard computer mouse as shown in Figure 2. Starting from left, the first

two images show, from two different angles, the gesture needed to perform the left click

functionality of a computer mouse and the next two images show the gesture required to

perform the right click functionality.

Figure 3.1: Gestures to Perform Standard Computer Mouse Functionality

 6

3.1 System Overview

The high-level structure of the GloveLet software system is divided into four

layers: The Hardware/Sensor Layer, the Computer Vision Layer, Event API Layer and

Application Layer. The Hardware and Sensor Layer is the physical layer, which will

provide us with the IMU and flex sensor data via the Bluetooth module. The Computer

Vision Layer are responsible for providing us with the user’s hand tracking co-ordinates.

The data from the Hardware and Sensor Layer and the Computer Vision Layer is processed

in the Event API Layer where the Kalman Filter Algorithm is applied to compute the user’s

hand gestures and track their hand movement. The Application Layer is the top-level layer

that utilizes the API functionality of the Event API layer. This layer would be responsible

for directing the data to third-party applications that would use the rotational and

translational data in their applications.

Figure 3.2: GloveLet High Level System Architecture Diagram

 7

3.1.1 Hardware and Sensor Layer

The Hardware/Sensor layer is composed of the hardware and sensor components.

Each specific sensor and hardware component is considered to be a subsystem of this layer.

Data from the sensors are handled by the micro-controller, which will in turn wirelessly

stream sensor data to the Event API layer on the host system for pre-processing.

Figure 3.3: GloveLet Hardware Sensors Layer

The Hardware and Sensor Layer consists of a microcontroller, a wireless Bluetooth

communication between the microcontroller and the PC, an IMU, flex sensors and a battery

to power up the microcontroller.

3.1.2 Computer Vision Layer

The Computer Vision layer handles raw video stream data and runs the hand

tracking algorithm on the video frames. Coordinates of the hand relative to the area of the

captured video are its outputs.

 8

Figure 3.4: GloveLet Computer Vision Layer

The Camera/Video Stream subsystem will capture the frames from the computer’s

webcam and pass the data to the Hand Tracking subsystem, which will calculate the

position of the hand relative to the two-dimensional coordinate frame of the computer

screen. This data is then sent to the Event API Layer.

3.1.2.1 Hand Tracking Subsystem

Figure 3.5: Code Snippet for Hand Tracking

 9

Figure 6 shows the entire processes life cycle of how a camera frame is analyzed

and how the translational coordinates from the frame are extracted. Line 3 in Figure 6 calls

a function to read the frame from the camera. Line 4-5 in Figure 6 is responsible for

segregating the tracking color on the hand and outlining the shape of the color that is being

tracked. This outlined shaped is called a contour [4]. If a contour is found, line 7-8 in Figure

6 is responsible for finding the center of the contour and normalizing it to the coordinate

space of the computer. Line 9 in Figure 6 will then move the cursor on the screen to the

position of the normalized center and output the x and y coordinate of the position it moved

on the screen.

3.1.3 Event API Layer

The Event API layer is divided into four subsystems. These systems are Sensor

Data Pre-processing, Computer Vision Data Pre-processing, Motion Data Pre-processing,

and the Front-Facing Event API. Data is received from both the Hardware and Sensor layer

and the Computer Vision Layer. Pre-processing of the raw data is handled at this layer, and

is relayed to the Application layer via the Front-Facing Event API.

Figure 3.6: GloveLet Event API Layer

 10

This layer is responsible for any necessary pre-processing of the raw data received

from the Hardware and Sensor layer via wireless communication. The data processed here

will be the IMU and flex sensor data. Pre-processing includes parsing and transforming

raw data into timestamped data structures that can be used for further processing. The

processed IMU data are sent to the Motion Data Pre-processing subsystem for further

processing

This subsystem will also provide the system checks for whether or not the hardware

has been connected to the host system. It will be responsible for establishing and

maintaining wireless connection with the hardware, and ensuring that valid default data are

passed if connectivity is lost.

3.1.4 Application Layer

Figure 3.7: GloveLet Application Layer

The Application Layer Subsystem is the user-facing application, which receives

tracking data from the Event API subsystem and translates that into computer mouse

pointer or three-dimensional object movement and rotation data. It provides a user-

 11

interface for the user to talk to the hardware and configure the application for gesture

recognition and a more customized tracking.

3.2 System Data Flow

Figure 3.8: GloveLet System Data Flow

 12

The Hardware and Sensor layer and the Computer Vision layer are the low-level

layers of our system. The microcontroller in the Hardware and Sensor layer is responsible

for collecting the flex sensor data for finger movement, and the IMU data for the hand

rotation, and sending it to the Event API Layer via the Bluetooth Wireless Communication

subsystem within the Hardware and Sensor layer. The Computer Vision layer is responsible

for reading the frames from the users webcam and analyzing them to find the hands x and

y coordinate. These coordinates are then sent to the Event API Layer.

The Event API Layer lies between the low-level layers (i.e. Computer Vision and

Hardware and Sensor layer) and top-level layer (i.e. the Application layer) and is

responsible for the data processing and communication between the two different layers.

The Event API receives the data from the Hardware and Sensor layer and the Computer

Vision layer in two different processes running in parallel. The two sets of data are then

pre-processed in their respective processes and sent to the Application layer. The sensor

data, i.e. the IMU data and the flex sensor data, are sent to the Sensor Data Pre-Processing

submodule in the Event API Layer for parsing, transforming raw data into timestamped

data structures and also for signal noise reduction. After the data are processed from the

Sensor Data Pre-Processing subsystem, the IMU data are then sent to the Motion Data Pre-

Processing subsystem, where the co-ordinate transform between the IMU’s coordinate

frame and Worlds coordinate frame is computed in order to get accurate glove to three-

dimensional virtual object rotation mapping. The final computed flex sensor and IMU data

are sent to the Front-Facing Event API, which sends the data to the Application Layer.

The Application layer is the high-level layer of our system. It collects the processed

data from the Event API Layer and translates that into computer cursor movement or three-

 13

dimensional virtual object movement and rotation. It also provides a user interface for the

user to talk to the hardware and configure the application for gesture recognition and a

more customized tracking.

 14

CHAPTER 4

DISCUSSION

The integration of computer vision and sensor data was one of the primary

challenges of this project. Data pre-processing methods for Computer Vision and sensor

data were developed separately as subsystems. For this reason, an event-based data flow

method was designed and implemented. The concept of this system was derived from

commonly used mouse event APIs, where applications implement their own listener

interface, which receives mouse event information via callback functions.

To increase the efficiency and performance of computation of both Computer

Vision and sensor data, each was done on a separate process so that computation for both

could be done in parallel on the host device. This means that GloveLet applications have a

minimum of three processes running in parallel at a given time. Using multiprocessing

techniques, the Computer Vision and sensor processes dispatch events in a constant stream,

which are then distributed to listeners that execute a callback sub process on the main

program process.

Once the GloveLet application starts, the Computer Vision and sensor sub-

processes begin pre-processing data and dispatching events in parallel with the main

application process. The application will then enter a main loop, where on each execution

of the loop, the listeners will respond to any dispatched events. Within the listener callbacks

is where mouse functionality is implemented.

 15

In future implementations, the sub-processing and event dispatching would occur

on a separate background service which would begin when GloveLet is powered on. Event

APIs for GloveLet would be provided for applications to override and implement their own

functionality for GloveLet. This way, Computer Vision tracking and sensor data processing

is abstracted in full from functionality implementation.

4.1 Sensors

GloveLet uses two types of sensors to capture user hand gesture and motion data.

For finger gestures, flex sensors are used to capture the degree of bend in each of the

fingers. For rotational data, an IMU (Inertial Measurement Unit) with accelerometer,

magnetometer, and gyroscope and on-board AHRS (Attitude and Heading Reference

System) is used.

4.1.1 Flex Sensors

Figure 4.1: Flex Sensor Variable Resistance Readings [5]

GloveLet uses a total of four flex sensors to capture data regarding the degree of

bend of each finger. The index and middle fingers each have a 4-inch flex sensor. Two 2-

inch flex sensors are attached to the thumb, one on the outer thumb and one on the inner

thumb. This is due to the opposable nature of the thumb, which has a higher degree of

freedom in bend motion. An analog signal is received from each of the flex sensors, and

the microcontroller then executes an algorithm to clamp and normalize the readings before

 16

outputting each data sample. Flex sensor values read from the microcontroller are thus

floating point numbers between zero and one, where zero is no--or minimal--bend and one

is full--or maximum--bend.

For use as a mouse-type interface device, thresholds for bends are set and control

flow statements are used to determine which action is being performed. For example, if the

index finger exceeds a predetermined threshold, this is considered equivalent to the left

mouse button being pressed down and the left-button down state is entered. Once the bend

of the index finger decreases below a second predetermined threshold, this is considered

equivalent to releasing the mouse button, and the left-button down state is exited.

Future methods could include machine learning for more nuanced gesture

recognition, as well as training of new or custom gestures to expand the functionality of

GloveLet.

4.1.2 Inertial Measurement Unit (IMU)

Figure 4.2: Fusion Breakout BNO055 IMU [6]

The Fusion Breakout BNO055 IMU was used for this project due to the robust

embedded Sketch script libraries available for Arduino microcontrollers. These libraries

provide calibrated orientation and linear acceleration data out of the box.

 17

Orientation data provide the most use without further processing. Future

applications of rotational data could be used to increase the number of possible gestures.

For example, a ‘thumbs-up’ gesture that could be used to indicate scrolling up on a web

page, versus the ‘thumbs-down’ gesture could be used to indicate scrolling down.

Orientation of the hand can change the meaning of finger gestures.

Future methods that could be applied using accelerometer data could include

machine learning over a moving time series of data samples in order to recognize some

gestures, or simply to recognize whether the user is or is not moving their hand.

 18

CHAPTER 5

CONCLUSION

The Pied Pipers have achieved the goal of creating a lightweight, affordable,

comfortable and minimalistic yet robust device. The results of our project met our

expectations outlined in the project proposal. Our final prototype is able to effectively

control mouse movement and clicking with user hand gestures. The final prototype serves

as an additional proof-of-concept to similar existing projects and we believe that this design

has much room to grow.

 19

APPENDIX A

COMPUTER VISION TRACKING CODE

 20

import numpy as np
import tkinter
import pyautogui
import math
from GloveLet.utility.timeseries import DataTimeSeries
from GloveLet.utility.motion_multiplier import motion_multiplier
import logging
from ast import literal_eval
import sys
import cv2
from GloveLet.vision.gesture import Gesture
from GloveLet.vision.gestureAPI import PreDefinedGestures
from GloveLet.eventapi.event import EventAPIException

def callback(value):
 pass

class Vision:
 WINDOW_SIZE = 4 # The window size for calculating the average
 PREV_MEMORY = 2 # Previous points stored.

 def __init__(self, default_values):
 pyautogui.FAILSAFE = False
 root = tkinter.Tk()
 root.withdraw()
 # member variables
 self.webcam = cv2.VideoCapture(0)
 self.screen_width = root.winfo_screenwidth()
 self.screen_height = root.winfo_screenheight()
 self.cameraWidth = self.screen_width / 2
 self.cameraHeight = self.screen_height / 2
 self.webcam.set(cv2.CAP_PROP_FRAME_WIDTH, self.cameraWidth)
 self.webcam.set(cv2.CAP_PROP_FRAME_HEIGHT, self.cameraHeight)
 self.output = {}
 self.handContour = {}
 self.canvas = None
 self.handMoment = {}
 self.foundContour = {}
 self.realX = {}
 self.realY = {}
 self.stationary = {}
 self.mouseX = self.screen_width/2
 self.mouseY = self.screen_height/2
 self.queue = []
 self.clickThresh = 45
 self.pinched = False

 21

 self.window = {}
 self.movement_history = {}
 self.record = {}
 self.boundaries = {}
 self.init_mem_vars(default_values)
 self.handMoment = (0, 0)
 self.foundContour = True
 self.stationary = False
 self.record = False
 self.realX = 0
 self.realY = 0
 self.movement_history = []
 self.window = DataTimeSeries(
 self.WINDOW_SIZE, 2, auto_filter=True)
 self.init_gestures()

 def init_mem_vars(self, default_values):
 if not default_values:
 with open('.vision.config', 'w') as file:
 value = self.find_range()
 self.boundaries = value
 file.write('{}\n'.format(str(value)))
 else:
 try:
 with open('.vision.config', 'r') as file:
 for line in file:
 values = literal_eval(line)
 self.boundaries = values
 except IOError:
 print('Config file not found. Run the program with -r flag.')
 sys, exit()
 except Exception:
 print('Not all the fingers have colors configured. Run with -r flag')
 sys.exit()

 def find_range(self):
 range_filter = 'HSV'
 cv2.namedWindow("Trackbar", 0)
 for i in ["MIN", "MAX"]:
 v = 0 if i == "MIN" else 255
 for j in range_filter:
 cv2.createTrackbar("%s_%s" %
 (j, i), "Trackbar", v, 255, callback)
 while True:
 _, image = self.webcam.read()
 image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

 22

 values = []
 for i in ["MIN", "MAX"]:
 for j in range_filter:
 v = cv2.getTrackbarPos("%s_%s" % (j, i), "Trackbar")
 values.append(v)
 lower = (values[:3])
 upper = (values[3:])
 thresh = cv2.inRange(image, tuple(lower), tuple(upper))
 # layout = np.vstack((thresh, image))
 cv2.imshow('Thresh', thresh)
 # cv2.imshow('Image', image)
 if cv2.waitKey(1) & 0xFF is ord('q'):
 cv2.destroyAllWindows()
 return tuple([lower, upper])

 def read_webcam(self):
 _, self.frame = self.webcam.read()
 self.frame = cv2.flip(self.frame, 1)
 # for finger in self.ACTIVE_FINGERS:
 self.canvas = np.zeros(self.frame.shape, np.uint8)
 self.frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)

 def threshold(self):
 (lower, upper) = self.boundaries
 lower = np.array(lower, dtype="uint8")
 upper = np.array(upper, dtype="uint8")
 mask = cv2.inRange(self.frame, lower, upper)
 kernel = np.ones((5, 5), np.uint8)
 self.output = cv2.bitwise_and(
 self.frame, self.frame, mask=mask)
 self.output = cv2.cvtColor(
 self.output, cv2.COLOR_BGR2GRAY)
 self.output = cv2.erode(
 self.output, kernel, iterations=1)
 self.output = cv2.dilate(
 self.output, kernel, iterations=3)

 def extract_contours(self):
 _, self.contours, _ = cv2.findContours(
 self.output.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 maxArea, idx = 0, 0
 if len(self.contours) == 0:
 self.foundContour = False
 return
 else:
 self.foundContour = True

 23

 for i in range(len(self.contours)):
 area = cv2.contourArea(self.contours[i])
 if area > maxArea:
 maxArea = area
 idx = i
 self.realHandContour = self.contours[idx]
 self.realHandLength = cv2.arcLength(self.realHandContour, True)
 self.handContour = cv2.approxPolyDP(
 self.realHandContour, 0.001 * self.realHandLength, True)

 def __check_stationary(self):
 search_len = 3
 val = -1 * (search_len + 1)
 self.prev_record_state = self.record
 if self.can_do_gesture:
 xPoints = [pt[0] for pt in self.movement_history[val:-1]]
 yPoints = [pt[1] for pt in self.movement_history[val:-1]]
 xAvg = np.average(xPoints)
 yAvg = np.average(yPoints)
 factor = 0.04
 for [x, y] in self.movement_history[-(search_len + 1):-1]:
 if (x-xAvg)**2 + (y-yAvg) > factor * \
 min(self.cameraWidth, self.cameraHeight):
 if self.stationary:
 self.record = True
 self.stationary = False
 return
 if not self.stationary:
 self.record = False
 self.stationary = True

 def find_center(self):
 self.moments = cv2.moments(self.handContour)
 if self.moments["m00"] != 0:
 self.handX = int(self.moments["m10"] / self.moments["m00"])
 self.handY = int(self.moments["m01"] / self.moments["m00"])
 self.handMoment = (self.handX, self.handY)

 def normalize_center(self):
 self.window.add(self.handMoment)
 self.realX, self.realY = self.window[0]
 # print('{}'.format(self.window.timestamp[0]))
 self.movement_history += [(self.realX, self.realY)]
 self.__check_stationary()

 24

 def move_cursor(self):
 x = self.realX * (self.screen_width / self.frame.shape[1])
 y = self.realY * (self.screen_height / self.frame.shape[0])
 return (x, y)

 def start_process(self):
 """start_process
 This is where all the functions for tracking the fingers and
 movement are called. This is the master function.
 """
 while True:
 self.read_webcam()
 self.threshold()
 self.extract_contours()
 if self.foundContour:
 self.find_center()
 self.normalize_center()
 else:
 self.stationary = True
 self.draw()
 self.frame_outputs()
 self.check_can_perform_gesture()
 self.determine_if_gesture()
 x, y = self.move_cursor()
 # Exit out of this hell hole.
 if cv2.waitKey(1) & 0xFF is ord('q'):
 break
 cv2.destroyAllWindows()

 vision = Vision()
 vision.start_process()

 25

APPENDIX B

INITIAL AND FINAL DESIGN

 26

Figure B.1: Initial GloveLet Conceptual Design

Figure B.2: Final GloveLet Design

27

REFERENCES

[1] ““The Centre for Computing History.” Centre For Computing History,

www.computinghistory.org.uk/det/613/the-history-of-the-computer-mouse/.

[2] Binu. “Optical Mouse – Principle and Working.” IT Blogs, 11 Aug. 2009,

itblogs.in/computers/hardware/optical-mouse-principle-and-working/.

[3] Pan, Tse-Yu, et al. “A Noise Reduction Method for IMU and Its Application on

Handwriting Trajectory Reconstruction.” 2016 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW), 2016,

doi:10.1109/icmew.2016.7574685.

[4] “Contour Approximation Method.” OpenCV: Image Thresholding,

docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html.

[5] “Method to Interface and Use Flexibend Sensor.” Tutorial by Cytron, 10 Aug.

2010, tutorial.cytron.io/2012/08/10/method-to-interface-and-use-flexibend-

sensor/.

[6] Townsend, Kevin. “Adafruit BNO055 Absolute Orientation Sensor.” Power

Usage | Adafruit Motor Shield | Adafruit Learning System, 22 Apr. 2015,

learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview.

28

BIOGRAPHICAL INFORMATION

Arnav Garg will graduate in May 2018 with an Honors Bachelor of Science in

Computer Science from the University of Texas at Arlington (UTA). He plans to conduct

research in graduate school, ideally in Computer Vision and Deep Learning.

Garg has worked as a Software Engineering Intern in two startups, Nod Labs in

Mountain View, CA, and Cloud 9 Perception in Arlington, TX, where he assisted in

devising various Computer Vision algorithms. He has also served as an Undergraduate

Research Assistant at the Heracleia Human Interaction Lab at UTA.

.

	GLOVELET
	Recommended Citation

	TABLE OF CONTENTS

