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ABSTRACT

HIGHER-DERIVATIVE QUANTUM FIELD THEORY AND ITS IMPLICATIONS

FOR HAWKING RADIATION AND NONLOCALITY

Gordon Kanan, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Zdzislaw Musielak

One of the fundamental equations of quantum field theory is the Klein-Gordon

equation which can be constructed using irreducible representations of the Poincaré

group and describes the dynamics of spin-0 matter. The higher derivative Klein-

Gordon equations are also constructed using irreducible representations of the Poincaré

group and are, thus, invariant under operations of this group. These higher derivative

Klein-Gordon equations can be placed into two series depending on the power of the

derivative, one for odd powers of the derivative and one for even powers, whose solu-

tions yield timelike and spacelike fields. Applying these higher derivative equations

to a Schwarzschild black hole allows investigation of massless and massive particle

emissions in addition to the known Hawking radiation, as well as implying a flux of

tachyonic quantum fields from the black hole. The spacelike fields deduced from the

higher derivative Klein-Gordon equation offer a possible explanation of nonlocality,

as in the case of entangled particles.
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CHAPTER 1

Introduction

1.1 Brief Historical Background

During the late 1600’s and early 1700’s Newton considered light to have a parti-

cle nature, even as in approximately the same period Robert Hooke, Christiaan Huy-

gens and Augustin-Jean Fresnel were developing a wave theory of light. The Thomas

Young double-slit experiment in 1801 showed wave interference of light adding weight

to the wave view of light. At the end of the 18th century light was considered strictly

as a wave as described by Maxwell’s equations and Maxwell showed that visible light,

infrared light, and ultraviolet light were all electromagnetic waves of differing frequen-

cies. But in 1900 Planck proposed that light was emitted in black-body radiation as

discrete quanta of energy and somewhat later Einstein, also, suggested that light is

emitted and absorbed as discrete quanta in his work on the photoelectric effect. Niels

Bohr published his famous paper on the hydrogen atom in 1913 and in that paper he

described the laws for the hydrogen atom’s spectral lines. Throughout the 1910’s and

1920’s a host of prominent physicists such as Born, Planck, Heisenberg, Dirac, Pauli,

Bohr and Einstein to name a few were developing the early quantum mechanics. In

1924 Louis de Broglie published his doctoral thesis, for which he won the Nobel prize,

proposing that matter can exhibit wave properties. Using de Broglie’s work Erwin

Schrödinger produced his equation for the time evolution of a quantum mechanical

wave in 1926. Max Born gave the interpretation of the square of the absolute value

of the wave as being the probability density amplitude of the property under consid-

eration.
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The first formulation of quantum mechanics (QM) was non-relativistic quantum me-

chanics (NRQM) as represented by the Schrödinger equation (Schrödinger, 1928)

ih̄
∂φ

∂t
= − h̄2

2m
∇2φ+ V φ, (1.1)

where φ is the wave function solution and V is the potential. This equation was

obtained by first quantization of classical equations. Any physical theory must be

consistent with special relativity and soon after the development of NRQM physi-

cists began working on a theory to incorporate special relativity into QM leading

to relativistic quantum mechanics (RQM). This effort quickly led to quantum field

theory (QFT) using second quantization. It became immediately apparent that spin

was fundamentally important in QFT and different equations were needed to de-

scribe spin-0 particles (Klein-Gordon equation), spin-1/2 particles (Dirac equation)

and spin-1 particles (Proca equation and Maxwell’s equations) (Greiner,1990; Ryder,

1996).

Eugene Wigner made significant contributions to the development of quantum

mechanics through the use of group theory. In particular, he explained that SU(4), the

special unitary group in four dimensions, could be applied to nuclear forces. But even

more importantly, working on the Lorentz group, he determined a set of irreducible

unitary representations which led to his famous 1939 paper on representations of the

inhomogeneous Lorentz group (Poincaré group) which allowed for the identification

of elementary particles with labels for mass and spin (Wigner, 1939).
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1.2 Basic Quantum Field Theory Equations

The Klein-Gordon (K-G) equation for spin-0 particles in QFT is a differential

equation which is 2nd order in time and 2nd order in the spatial coordinates and

whose solutions are scalar wave functions. The form of the K-G equation is

(∂µ∂µ +m2)ψ(x) =

(
∂2

∂t2
−∇2 +m2

)
ψ(x) = 0, (1.2)

where x = (x0, x1, x2, x3) and ψ(x) is the wave function solution. Later we use ω2
0

in place of m2 which will be explained in section 3.2. Since the K-G equation is

consistent with special relativity the metric used is the Minkowski metric in flat

spacetime (Klein, 1926; Gordon, 1926)

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2, (c = 1). (1.3)

In 1927 Dirac began searching for an equation combining special relativity with

quantum mechanics resulting in the Dirac equation for fermions. At the same time

many physicists began applying quantum mechanics to fields instead of individual

particles which led to quantum field theory. The Dirac equation for spin-1/2 particles

is

(iγµ∂µ −m)ψ = 0, (1.4)

where the γµ ’s are the Dirac matrices or the γ-matrices, which are 4x4 matrices.

The solutions to the Dirac equation are 4-component spinors, ψ, involving energy, E,

momentum, p, and mass, m (Dirac, 1928).

The Proca equations for spin-1 particles are

F µν = ∂µAν − ∂νAµ; ∂µF
µν +m2Aν = 0; ∂νA

ν = 0, (1.5)

where F µν = electromagnetic field tensor and Aν = 4-vector potential.

When m = 0, as in the case of photons, the Proca equations reduce to Maxwell’s
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equations. The solutions to the Proca and Maxwell’s equations are vector wave func-

tions (Proca, 1936).

1.3 Outline of Dissertation

This thesis will deal only with spin-0 particles using a higher-derivative K-G

equation (Musielak et al., 2015). For reference in the rest of this section the K-G

equation is (∂µ∂µ + kµkµ)ψ(x) = 0. In essence, the higher-derivative K-G equation

results in two sequences of increasing powers of the K-G equation by repeated ap-

plication of the eigenvalue equation i∂µψ = kµψ, where ∂µ = ∂/∂µ = (∂t,−∇) and

kµ = (ω, ki). This will be explained in greater detail in Chapter 3.

We will be concerned only with real solutions to these two series which would

represent physically meaningful solutions. The other solutions to a given higher order

K-G equation are either complex solutions or purely imaginary solutions. One series

of these higher-derivative K-G equations results only in the original K-G equation

with its well-known solutions. However, the other series results in the original K-G

equation and, additionally, a K-G equation with a negative value for the constant

term. The solution to the second equation implies the existence of tachyonic fields for

which a quantum field theory for free spin-0 fields is explored in Chapter 4. In Chap-

ter 5 the ”tachyonic” equation is studied for possible addition to Hawking radiation

from Schwarzschild black holes. Finally, in Chapter 6 the Einstein/Podolski/Rosen

(EPR) paper, Bell’s theorem and the 2022 Nobel prize in physics awarded to Alain

Aspect, John Clauser and Anton Zeilinger for their work on nonlocality are discussed

with consideration of the possible relation between nonlocality and tachyonic fields

in quantum mechanics.

4



CHAPTER 2

Quantum Field Theory for Scalar Fields

2.1 Quantum Field Theory

The Klein-Gordon (K-G) equation, Dirac equations and Proca/Maxwell equa-

tions are the basis for Quantum Field Theory (QFT). The principle of least action,

Lagrange density and Hamiltonian density are also fundamental to QFT. Since this

paper deals only with spin-0 fields, only the K-G equation will be considered in what

follows (Ryder, 1996; Greiner and Reinhardt, 1996).

2.2 Real Klein-Gordon Field

As described above the K-G equation is

(∂µ∂µ +m2)ψ(x) =

(
∂2

∂t2
−∇2 +m2

)
ψ(x) = 0. (2.1)

Second quantization is performed by keeping the same commutators from Non-Relativistic

Quantum Mechanics (NRQM) and using the relativistic Lagrangian (or relativistic

Hamiltonian). This, then, gives a relativistic quantum mechanical equation where

ψ(x) is a state or wave function. There are two problems with this Relativistic Quan-

tum Mechanics (RQM) conception. One is that the probability density is not positive

definite. The other is the appearance of negative energy states. These two problems

are solved by considering the K-G equation as a field equation in which φ(x), the

Fourier transform of ψ(x), now becomes a field operator (Greiner and Reinhardt,

1996).
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2.2.1 Principle of Least Action

To go from RQM to QFT the Lagrange density from classical field theory is

used and canonical commutation relations are applied. The Hamiltonian density

can be obtained from the Lagrange density using the Legendre transformation. The

canonical commutation relation becomes

[φ(x), π(x′)] = ih̄δ(x− x′), (2.2)

where φ(x) is now a field operator and π(x) is the conjugate momentum operator.

2.2.2 Solutions to the K-G equation

The solutions to the real K-G equation (since we are considering only electrically

neutral particles) can be written

φ(x) =

∫
d3k

(2π)32ωk
[a(k)e−ikx + a†(k)eikx], (2.3)

where k = kµ = (ωk,k), kx = kµx
µ and a(k) is an annihilation operator and a†(k) is a

creation operator. These operators obey the following commutation relations (Ryder,

1996)

[a(k), a†(k′)] = δ(k− k′) (2.4)

[a(k), a(k′)] = [a†(k), a†(k′)] = 0. (2.5)

2.2.3 Lagrangian density, Hamiltonian density, Number operator

The Lagrangian density for a real, relativistic, scalar field is

L =
1

2
[∂µφ∂

µφ−m2φ2]. (2.6)

The Hamiltonian density is obtained from the Lagrangian using the Legendre trans-

formation

H = πφ̇− L =
1

2
[∂µφ∂

µφ+m2φ2] (2.7)

6



and the Hamiltonian is then found by integrating the Hamiltonian density

H =

∫
Hd3x =

1

2

∫ [
(∂0φ)2 +∇φ · ∇φ+m2φ2

]
d3x. (2.8)

After substitution for the φ’s and considerable algebra the Hamiltonian is shown to

be

H =

∫
d3k

(2π)32ωk

ωk
2

[a†(k)a(k) + a(k)a†(k)]. (2.9)

The number operator, N(k), is defined to be N(k) = a†(k)a(k) and it is easy to show

that [N(k), N(k′)] = 0. Operating on an eigenstate the number operator will give the

number of particles in that state, i.e. N(k)|n(k)〉 = n(k)|n(k)〉.

The Hamiltonian can now be written in terms of the number operator

H =

∫
d3k ωk

[
N(k) +

1

2

]
. (2.10)

2.2.4 Annihilation and Creation Operators

As mentioned above a(k) is the annihilation operator and a†(k) is the creation

operator. They operate on states in the following manner

a(k)|nk〉 =
√
nk |nk − 1〉 (2.11)

a†(k)|nk〉 =
√
nk + 1 |nk + 1〉. (2.12)

2.3 Complex Klein-Gordon Field

The complex Klein-Gordon equation occurs in those cases in which the scalar

field possesses an electric charge. That which corresponds to the probability and

probability current in the Schrodinger equation is a 4-vector in the Klein-Gordon

equation and represents the charge and current density. The time component, ρ, is

given by

ρ =
ih̄

2m

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
(2.13)

7



and the 4-vector is

jµ = (ρ, j) =
ih̄

m
φ∗
←→
∂µφ, (2.14)

where φ∗
←→
∂µφ = φ∗∂µφ − ∂µ(φ∗)φ. Both ρ and j vanish when only the real Klein-

Gordon equation is considered, i.e. the scalar field possesses no electric charge (e.g.

Ryder, 1996).

The formalism used in this chapter will be used throughout the rest of the disserta-

tion but with modifications to accommodate the higher derivative aspects of the K-G

equation.

8



CHAPTER 3

Higher-Derivative Klein-Gordon Equations in Cartesian Coordinates

3.1 Poincaré Group, Eigenvalue Equations, Elementary Particles

To derive dynamical equations for particles on a space-time manifold, we begin

by defining carefully what we mean by an elementary particle. We are interested

in quantum particles, objects which may be described by a function of space-time

variables that we associate with a space-time, metric manifold. An elementary particle

is any object that may be described by a function existing in a Hilbert space and

transforming like an irreducible representation (irrep) of some symmetry group. The

symmetry group may be chosen arbitrarily, defining a particular type of particle. In

this thesis, we are interested in the symmetry group consisting of all the coordinate

transformations leaving the space-time metric of a given manifold invariant. We limit

ourselves to flat space-time and employ the Minkowski metric (Wigner, 1939; Kim

and Noz, 1986).

The Minkowski metric can be written as ds2 = dt2 − dx2 − dy2 − dz2, where

the spatial coordinates x, y and z, and time t are all measured in the same units

because the speed of light has been defined as c = 1. The group of this metric

is the Poincaré group, whose structure is given by the following semi-direct product:

P = Hp⊗sT (3+1), where T (3+1) is an invariant subgroup of space-time translations

and Hp is a non-invariant subgroup consisting of the remaining transformations and

the identity transformation (Kim and Noz, 1986; Weldon, 2003). In this thesis, we

consider the so-called proper orthochronous group P ↑+ that is a subgroup of P . To

identify an elementary particle, we require that a scalar, analytical wave function

9



ψ(xµ) transform as one of the irreps of the invariant subgroup T (3 + 1). Since the

transformation properties of the function are preserved in the irreps of the semi-direct

product of the group, it can be shown that a necessary condition that ψ represent an

elementary particle in any inertial frame of reference is the following set of eigenvalue

equations (Fry et al., 2011)

i∂µψ = kµψ , (3.1)

where ∂µ = ∂/∂xµ = (∂t,−∇), kµ = (ω, ki), kµ = (ω,−ki), with ∂0 = ∂t = ∂/∂t,

µ = 0, 1, 2, 3 and i = 1, 2, 3 and kµkµ = ω2 − kiki = ω2 − k · k = ω2 − k2. Since

i∂µ is a Hermitian operator, the kµ must be real numbers. The irreps of T (3 + 1)

and thus P ↑+ may be labelled by real numbers. By contrast, if we label the irreps

by a parameter called mass by Wigner (1939), some values of this parameter may

become imaginary (Kim and Noz, 1986). We will now use the set of eigenvalue

equations given by equation (3.1) to derive Poincaré invariant dynamical equations

in Minkowski space-time (Musielak et al., 2015).

3.2 Two Series of Higher-Derivative Equations

Let us consider two inertial observers who use sets of coordinates xµ and x′µ to

describe the state of the particle that is given by the following two scalar functions:

ψ(xµ) and ψ′(x′µ). In space-time with the Minkowski metric the coordinates xµ and

x′µ are related to each other by the Lorentz transformation Λµ
ν , which can be used

to obtain x′µ = Λµ
νx

ν . With this coordinate transformation, it is easy to show that

(∂′µ∂′µ)ψ′(x′µ) = (∂µ∂µ)ψ(xµ). The operator (∂′µ∂′µ) is one of two Casimir operators

for the Poincaré group (Kim and Noz, 1986) and the only one needed to develop

possible higher order equations for scalar functions.
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Using the above results, the simplest Poincaré invariant dynamical equation

that can be derived from the eigenvalue equations is

−∂µ∂µψ = kµkµψ = (ω2 − k2)ψ , (µ = 0, 1, 2, 3), (3.2)

which is commonly known as the Klein-Gordon (K-G) equation (Ryder, 1996; Greiner,

1990). We can write this equation in a more compact form by introducing a special

frame of reference with ki = 0 (i = 1, 2, 3), so that ω = ω0 in that special reference

frame. We call ω0 the invariant frequency since it is the same for all inertial observers

(Fry et al., 2011). This allows us to write ω2 = ω2
0 + k2, where k2 = k ·k = kiki, (i =

1, 2, 3), and since k2 = 0 then ω2 = ω2
0 and we obtain

(
∂µ∂µ + ω2

0

)
ψ = 0 . (3.3)

We note that classical mass and the Planck constant do not appear and are in fact

not needed since ω0 can be determined experimentally. In developing higher order

dynamical equations for particles or fields we rely upon the fundamental equation

(3.1), which is a set of eigenvalue equations defining an elementary particle. The

above method used to obtain the KG equation can now be applied two times and

three times to derive the following fundamental dynamical equations

(∂µ∂µ)2ψ − ω4
0ψ = 0 , (3.4)

and

(∂µ∂µ)3ψ + ω6
0ψ = 0 . (3.5)

After repeating the procedure an odd number of times or an even number of times,

the resulting Poincaré invariant dynamical equations are, respectively,

[
(∂µ∂µ)n + ω2n

0

]
ψ = 0 , (3.6)
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and

[
(∂µ∂µ)m − ω2m

0

]
ψ = 0 , (3.7)

where ω0 is a constant, and n is any positive odd integer and m is any positive even

integer. Based on our approach presented here, the above equations exhaust all pos-

sibilities of obtaining the fundamental linear equations for scalar state functions with

no interactions. It must be noted that these higher order differential equations have

solutions other than elementary state functions of the eigenvalue equations (equation

(3.1)), possibly introducing new physical phenomena in the form of fields (possibly,

for example, tachyonic fields). An interesting result obtained here is that there are

two distinct sets of Poincaré invariant dynamical equations: one infinite set with the

odd powers of (∂µ∂µ) and the ’plus’ sign in front of ω0, and the other infinite set with

the even powers of (∂µ∂µ) and the ’minus’ sign in front of ω0. In the remaining parts

of this thesis, we shall refer to equations (3.6) and (3.7) as the odd and even order

fundamental dynamical equations, respectively (Musielak et al., 2015).

It should be noted that, in reality, the ”odd” series is contained in the ”even”

series in the following sense: If m (m even) is equal to 2n (n odd), then the Klein-

Gordon equation to the power m = 2n can be factored as

[(∂µ∂µ)2n − (ω2
0)2n]ψ = [(∂µ∂µ)n − (ω2

0)n] [(∂µ∂µ)n + (ω2
0)n]ψ = 0

(Musielak et al., 2015).

3.3 The Odd Order Series with One Real Root

The first equation in this odd order series is for n = 1 and the corresponding

equation is (
∂µ∂µ + ω2

0

)
ψ = 0 . (3.8)
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This, of course, is just the K-G equation. The higher order equations in the odd order

series are of the form of equation (3.6), where, again, n is a positive odd integer,

[
(∂µ∂µ)n + ω2n

0

]
ψ = 0 , (3.9)

with ψ(t,x) =

∫
d3k

(2π)3
φ(t,k)eik·x and the general form of φ as φ(t,k) = A(k)e±iωt.

Equations of the form of equation (3.9) can be factored as

[
(∂µ∂µ)n + ω2n

0

]
ψ =

(
∂µ∂µ + ω2

0

) [ n∑
k=1

(−1)k+1 (∂µ∂µ)n−k ω
2(k−1)
0

]
ψ = 0. (3.10)

Equation 3.10 has two factors operating on ψ. The first factor operating on ψ is

obviously the K-G equation whose solutions are real. The second factor operating on

ψ provides solutions for which the ω’s are complex or purely imaginary. Therefore, if

we are looking for physically realistic solutions, then the higher derivative odd order

series offer nothing more than the K-G equation and solutions to the K-G equation.

3.3.1 Example for n = 3

To make this more explicit, let’s take as an example n = 3 which gives

[
(∂µ∂µ)3 + ω6

0

]
ψ = 0 . (3.11)

The Lagrange density for this equation is

L =
1

2

[
(∂µ)3 ψ (∂µ)3 ψ − ω6

0ψ
2
]
. (3.12)

Expanding the higher derivative operator of equation (3.11) will give us

(∂µ∂µ)3 =

(
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)3

=
∂6

∂t6
− 3

∂4

∂t4

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
13



+3
∂2

∂t2

[
2

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
+

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)]

−3

(
∂6

∂x4∂y2
+

∂6

∂x4∂z2
+

∂6

∂x2∂y4
+

∂6

∂y4∂z2
+

∂6

∂x2∂z4
+

∂6

∂y2∂z4

)

−6
∂6

∂x2∂y2∂z2
−
(
∂6

∂x6
+

∂6

∂y6
+

∂6

∂z6

)
. (3.13)

This equation can be written more succinctly using ∇2

(∂µ∂µ)3 =
∂6

∂t6
− 3

∂4

∂t4
∇2 + 3

∂2

∂t2
(∇2)2 − (∇2)3. (3.14)

So equation (3.14) is the differential operator form that will be used in equation 3.11.

The Fourier transform in space is

ψ(t,x) =

∫
d3k

(2π)3
φ(t,k)eik·x. (3.15)

Applying (∂µ∂µ)3 + ω6
0 to both sides of the Fourier transform will give us a 6th order

differential equation of φ(t,k) with respect to time, t,

∂6φ

∂t6
+ 3 k2 ∂

4φ

∂t4
+ 3 (k2)2 ∂

2φ

∂t2
+
[
(k2)3 + ω6

0

]
φ(t,k) = 0. (3.16)

For the solutions to equation (3.16) we take φ(t,k) = A(k)e±iωt, where A(k) and ω

are to be determined. The six possible solutions for ω are ω1± = ±
√
k2 + ω2

0, ω2± =

±
√
k2 + ω2

0 e
2πi
3 , and ω3± = ±

√
k2 + ω2

0 e
−2πi

3 . Thus, using Weldon (2003), the solu-

tions for φ(t,k) are

φ1(t,k) = φ(t,k) =
3∑
r=1

(
are
−iωrt + bre

iωrt
)
, (3.17)
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φ2(t,k) =
dφ

dt
=

3∑
r=1

(
ar(−iωr)e−iωrt + br(iωr)e

iωrt
)
, (3.18)

φ3(t,k) =
d2φ

dt2
=

3∑
r=1

(
ar(−ω2

r)e
−iωrt + br(−ω2

r)e
iωrt
)
. (3.19)

The momenta π1, π2 and π3 are given by

π1 =
3∑
r=1

[
ωr(3k

4 − 3k2ω2
r + ω4

r)
(
iare

−iωrt − ibreiωrt
)]

, (3.20)

π2 =
3∑
r=1

[
ω2
r(ω

2
r − 3k2)

(
are
−iωrt + bre

iωrt
)]

, (3.21)

π3 =
3∑
r=1

[
(−iω2

r)
(
are
−iωrt − breiωrt

)]
. (3.22)

Again using Weldon (2003), we define an expression for this example

1

Rr

= −6ωr(k
4 − 2k2ω2

r + ω4
r) (3.23)

and define the commutators for ar and bs as

[ar, bs] = δrsRr (3.24)

and in that case the commutation relationships obeyed by the functions φm and the

momenta πn will be

[φm, πn] = iδmn (3.25)

[φm, φn] = [πm, πn] = 0, (3.26)

where m = 1, 2, 3 and n = 1, 2, 3. Ostrogradski, who generalized Lagrange mechanics

to higher derivatives as discussed by Whittaker (1947), defined the Hamiltonian in

this case to be

H =
3∑
r=1

[
−3ωr(k

4 − 2k2ω2
r + ω4

r) (arbr + brar)
]
. (3.27)
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or using
1

Rr

becomes

H =
3∑
r=1

ωr

(
brar
Rr

+
1

2

)
(3.28)

For a fixed wave vector, k, the following commutators are satisfied

[H, ar] = −ωrar, [H, br] = ωrbr, [H,φn] = −idφn
dt

, (3.29)

where n = 1, 2, 3.

Under the assumption that the field operators φ1, φ2 and φ3 are self-adjoint, we get

br = a†r and by taking into account only real and positive frequency ωr ≡ ω1+ the

Hamiltonian is simply

H = ω1+

(
a†1a1

R1

+
1

2

)
. (3.30)

Following Weldon (2003), we define the natural vacuum |vac〉 of the Fock space as

a1+|vac〉 = 0 with the zero-point energy H|vac〉 = E0|vac〉, where E0 = ω1+. For a

one-particle state, we have

Ha†1+|vac〉 = (ω1+ + E0)a†1+|vac〉 , (3.31)

with the norm being given by

〈vac|a1+a
†
1+|vac〉 = R1. (3.32)

3.3.2 Discussion

In the example for n = 3 the equation is a 6th-order Poincaré invariant dynam-

ical equation whose solutions are a consequence of the metric and correspond to

ω1± = ±
√
k2 + ω2

0, ω2± = ±
√
k2 + ω2

0 e
2πi
3 , ω3± = ±

√
k2 + ω2

0 e
−2πi

3 .

The requirement of the eigenvalue equations (equation (3.1)) that the solutions be

real is obeyed by only one of the ω’s, namely ω1± with ω0 > 0. In fact ω2± and

ω3± are complex conjugates, i.e. not strictly real, and are not considered as physical
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solutions. Moreover, ω1± is consistent with the Special Theory of Relativity whereas

ω2± and ω3± are not.

The results for the ω’s for n = 3 (6th-order ODE) can be generalized to any odd

n ≥ 3. There will be, of course, an odd number of ω’s but ω1 will be the solution to

the Klein-Gordon equation which will leave an even number of remaining ω’s. These

will all be in complex conjugate pairs which will not be real solutions to the 2n-order

differential equation and thus, physically unacceptable. The ω’s will be of the form

ωL± = ±
√
k2 + ω2

0e
i2πl
L , (3.33)

where L = 1, 2, ..., n and l = 0, 1, ..., L − 1. Hence, the ω’s, which represent energy,

are complex quantities.

Therefore, we reach the conclusion that all the higher derivative equations of the odd

series have only the solutions of the Klein-Gordon equation as physically acceptable

solutions. As a result, for the odd series there are no fundamental dynamical equations

that could be used to construct new higher-derivative quantum field theories.

3.4 The Even Order Series with Two Real Roots

We now consider the even order series, i.e.

[
(∂µ∂µ)m − ω2m

0

]
ψ = 0, (3.34)

where m is a positive even integer. This general form of the operator can be factored

in the following manner.

(∂µ∂µ)m − ω2m
0 =

[
(∂µ∂µ) + ω2

0

] [
(∂µ∂µ)− ω2

0

] m/2∑
k=1

(
(∂µ∂µ)m−2k ω

2(k−1)
0

) . (3.35)

This operator has three factors and when applied to the function ψ equals zero. The

first two factors applied individually to ψ yield real solutions whereas the last factor
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applied to ψ yield only imaginary or complex solutions. As we are only concerned

with physically meaningful (real) solutions, the first two factors applied to ψ are

those which represent equations of interest. All of the higher derivative equations

of the even series can be reduced to three factors, only two of which yield real and

therefore physically meaningful solutions. What is of notable interest in the even

series is that it produces the Klein-Gordon equation (first factor operating on ψ) as

well as a second, different equation (second factor operating on ψ) with real solutions,

unlike the odd series equations which yield only the Klein-Gordon equation for real

solutions. Since all of the higher derivative equations in the even series ultimately

produce the same two factors which give real solutions for ω, we need only consider

the lowest order (m = 2) in the even series. However, higher even orders with m ≥ 4

will give solutions of the lowest order plus additional complex conjugate solutions.

The lowest order equation in this series is

[
(∂µ∂µ)2 − ω4

0

]
ψ(t,x) = 0 (3.36)

and the corresponding Lagrange density is

L =
1

2

[
(∂µ)2ψ(∂µ)2ψ − ω4

0ψ
2
]
. (3.37)

If the Euler-Lagrange equation is applied directly to the Lagrange density we should

recover the higher-derivative Klein-Gordon equation. The Euler-Lagrange equation

for this higher-derivative Lagrange density is of the form

(∂µ)2

(
∂L

∂ [(∂µ)2ψ]

)
+ (∂µ)2

(
∂L

∂ [(∂µ)2ψ]

)
+
∂L
∂ψ

= 0. (3.38)

Evaluating this Euler-Lagrange equation leads immediately to the higher-derivative

Klein-Gordon equation [
(∂µ∂µ)2 − ω4

0

]
ψ = 0. (3.39)
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To obtain the Lagrangian, the Lagrange density is Fourier transformed in space using

ψ(t,x) =

∫
d3k

(2π)3
φ(t,k) eik·x , (3.40)

leading to

L =
1

2

[(
d2φ

dt2

)2

+ 2k2d
2φ

dt2
φ+ k4φ2 − ω4

0φ
2

]
e2ik·x, (3.41)

where φ = φ(t,k), k is the wave 3-vector and x is the spatial 3-vector.

Using the Lagrange-Euler equation once again but with the Lagrangian instead of the

Lagrange density

d2

dt2

(
∂L

∂φ̈

)
− d

dt

(
∂L

∂φ̇

)
+
∂L

∂φ

=
1

2

[
2
d4φ

dt4
+ 2k2d

2φ

dt2
+ 2k2d

2φ

dt2
+ 2(k4 − ω4

0)φ

]
e2ik·x

=
1

2

[
2
d4φ

dt4
+ 4k2d

2φ

dt2
+ 2(k4 − ω4

0)φ

]
e2ik·x

=

[
d4φ

dt4
+ 2k2d

2φ

dt2
+ (k4 − ω4

0)φ

]
e2ik·x = 0, (3.42)

which finally produces a 4th order differential equation of φ(t,k)

d4φ

dt4
+ 2k2d

2φ

dt2
+
(
k4 − ω4

0

)
φ = 0. (3.43)

As a solution to equation (3.43) we try φ(t,k) = A(k)e±iωt, where A and ω are to

be determined. The solutions of φ(t,k) are found to be those with the following

frequencies

ω1± = ±
√
k2 + ω2

0 (3.44)
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and

ω2± = ±
√
k2 − ω2

0. (3.45)

Thus, we can write

φ(t,k) =
2∑
r=1

[
ar(k)e−iωrt + br(k)eiωrt

]
, (3.46)

where ar and br represent A for different values of ωr (ωr is either ω1 or ω2).

Of course, φ(t,k), ar, br are now interpreted as operators.

3.4.1 Quantization

We use the method of Weldon (2003) for the quantization of higher-derivative

field theories

φn =
dn−1

dtn−1φ
and πm =

N∑
l=m

(−1)l−mCl
d2l−mφ

dt2l−m
,

where the φn are the canonical coordinates, Cl are constants determined by the field

equation, and the πm are the canonical momenta. Since N = 2 there will be two

coordinate fields, φ1 and φ2, and two canonical momenta, π1 and π2. The explicit

forms for the coordinates and momenta are

φ1 = φ =
2∑
r=1

[
are
−iωrt + bre

iωrt
]
, (3.47)

φ2 =
dφ

dt
=

2∑
r=1

[
ar(−iωr)e−iωrt + br(iωr)e

iωrt
]
, (3.48)

π1 =
2∑
r=1

[
ωr
(
−2k2 + ω2

r

) (
−iare−iωrt + ibre

iωrt
)]
, (3.49)

π2 = −
2∑
r=1

[
ω2
r

(
are
−iωrt + bre

iωrt
)]

(3.50)
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and they obey the following commutation relations

[πm, φn] = −iδmn (3.51)

[φm, φn] = [πm, πn] = 0, (3.52)

where m = 1, 2 and n = 1, 2.

Again, using the method of Weldon (2003) we introduce a term which in our case

with N = 2 will be

Rr =
−1

4ωr(k2 − ω2
r)
, (3.53)

where r = 1, 2. For equation (3.51) to be true the commutator of the operators ar

and bs must satisfy

[ar, bs] = δrsRr. (3.54)

Ostrogradski (Whittaker,1947) defined the Hamiltonian, H, as

H = −L+ π1φ2 + π2
d2φ1

dt2
(3.55)

which becomes

H = 2
2∑
r=1

[
ω2
r(k

2 + ω2
r)(arbr + brar)

]
=

2∑
r=1

ωr

(
brar
Rr

+
1

2

)
. (3.56)

For a fixed wave vector, k, the following commutators are satisfied

[H, ar] = −ωrar, [H, br] = ωrbr, [H,φn] = −idφn
dt

, (3.57)

where n = 1, 2.

Let us now assume that the field operators φ1 and φ2 are self-adjoint, so that we have

br = a†r with [ar, a
†
s] = δrsRr. Moreover, we consider only positive and physically

acceptable (real) ωr. Since ω1+ and ω2+ (equations (3.44) and (3.45)) are the only

frequencies that satisfy these conditions, we write the Hamiltonian as

H =
2∑
r=1

ωr

(
a†rar
Rr

+
1

2

)
, (3.58)
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where ωr = ω1+, ω2+, and a†r and ar are the creation and annihilation operators

corresponding to these frequencies.

Following Weldon (2003), we define the natural vacuum |vac〉 of the Fock space

as ar|vac〉 = 0 with the zero-point energy H|vac〉 = E0|vac〉, where E0 =
ω1+ + ω2+

2
.

For a one-particle state, we have

Ha†r|vac〉 = (ωr + E0)a†r|vac〉 , (3.59)

with the norm being given by

〈vac|ara†s|vac〉 = δrsRr . (3.60)

3.4.2 Discussion

The 4th-order (m = 2) Poincaré invariant, dynamical equation has solutions

for which there are two ω’s, i.e. ω1± = ±
√
k2 + ω2

0 and ω2± = ±
√
k2 − ω2

0, where

ω0 is real and ω0 > 0. These solutions are consequences of the (Minkowski) metric.

Clearly, ω1+ and ω1− are solutions to the Klein-Gordon equation. They describe

spin-0, massive particles of ordinary matter, with ω1+ representing particles (positive

energy) and ω1− representing antiparticles (negative energy). For ordinary matter,

then, ω1± = ±
√
k2 + ω2

0 which can be written as

ω2
1± − k2 = ω2

0. (3.61)

This equation describes the ”mass shell” and consists of a two-sheeted hyper-

boloid: one with ω1+ ≥ ω0 and the other with ω1− ≤ −ω0. These two sets of solutions

will be separate and distinct for any proper Lorentz transformation (Schwartz, 2016).

See figure 3.1.

Now ω2± are solutions to the second factor in equation (3.35) as applied to ψ,

i.e. [(∂µ∂µ)− ω2
0]ψ = 0. This equation is the Klein-Gordon equation for tachyonic or
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space-like fields whose quantization gives tachyons (Schwartz, 1982, 2011, 2016). Its

solutions, ω2± = ±
√
k2 − ω2

0, can be rewritten as

ω2
2± − k2 = −ω2

0 (3.62)

and describes a mass shell which is a hyperboloid of one sheet in four dimensions.

Positive and negative values of ω2± are not separated. See figure 3.2.

The Klein-Gordon equation for tachyons or space-like fields in the higher-

derivative equations occurs without any assumptions of superluminal velocities for

Figure 3.1 Hyperboloid of two sheets

23



particles, fields or reference frames. Its appearance is the result of 4n (n = 1, 2, 3, ...)

repeated applications of the eigenvalue equation (3.1), i.e. i∂µψ = kµψ .

If ω1 represents the energy, then the solutions ω1± = ±
√
k2 + ω2

0 satisfy the Spe-

cial Relativity energy-momentum relationship. It would seem that ω2± = ±
√
k2 − ω2

0

would not be consistent with this principle. However, Hill and Cox (2012), have pro-

posed transformations (in fact, two new transformations) applied to inertial reference

frames with relative velocities greater than the speed of light which are, as they say,

transformations ”complementary” to the Lorentz transformations of Special Relativ-

ity for subluminal velocities. Further, with these transformations there is no need for

Figure 3.2 Hyperboloid of one sheet
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contrived concepts such as imaginary mass nor complicated physics.

The results obtained in section 3.4 can be easily generalized to any value of m from

even series, and the general solutions correspond to

ωL± = ±
√
k2 + ω2

0e
i2lπ/L , (3.63)

where L = 1, 2, 3, ... and l = 0, 1, 2, ... L − 1. The solutions with ω1± and ω2± are

obtained for L = 1 or L = 2 and l = 0, 1. However, for all other values of L, the

frequencies ωL± are complex conjugates, which means that they are inconsistent with

our requirement that ωL± be real.

This is an interesting result as it clearly shows that every fundamental dynam-

ical equation of the set of infinite Poincaré invariant equations with even m > 2 has

solutions corresponding to ω1± and ω2±, which are the same solutions as those ob-

tained for the fundamental dynamical equation with m = 2. As already stated in

section 3.4, the requirement imposed by the eigenvalue equations is that the values of

all ω’s be real, which means that the complex conjugate solutions cannot be consid-

ered in the approach presented here. Hence, we have reached an important conclusion

that among the infinite set of fundamental dynamical equations with the even values

of m, the invariant equation with m = 2 should be preferentially used in constructing

higher-derivative quantum field theories.

The explicit form of the fundamental dynamical equation withm = 2 is equation

(3.36) above, i.e.

(∂µ∂µ)2ψ − ω4
0ψ = 0 . (3.64)

The fact that the solutions with ω1± to this equation are the same as those given

by the original Klein-Gordon equation should not be surprising because our results

presented in section 3.4 established the relationship between both equations. On the

other hand, the above equation includes more than just the Klein-Gordon equation
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and, as a result, equation (3.64) also allows for tachyonic solutions with ω2±. These

solutions are relevant to the faster than the speed of light Special Relativity (Hill

and Cox, 2012). They may also be of interest in string theories and in some recent

attempts to explain the nature of dark energy (e.g. Bagla et al., 2003) as well as a

possible addition to Hawking radiation from Schwarzschild black holes (discussed in

chapter 5). Another interpretation of these solutions (ω2±) is that the wave function

for equation (3.64) comprises a time-like dynamic (ω1± for the Klein-Gordon equation)

and a space-like dynamic (ω2± for the ”negative” Klein-Gordon equation). This

interpretation of the solutions may offer a possible explanation for nonlocalities of

quantum mechanics (discussed in chapter 6).

26



CHAPTER 4

Quantum Field Theory for Free Spin-0 Tachyons

Substantial work on tachyons and tachyonic fields has been done by Schwartz

(1982, 2011, 2016). As he points out, for ordinary particles or fields some initial

solution is contained in some finite volume and the solution at a later time will also

be contained in a finite volume since the particle or field can travel no faster than the

speed of light. However, tachyons can travel at arbitrarily fast speeds and therefore

the idea of the solution being contained in a given finite volume does not necessarily

hold. For tachyons an alternative arrangement could be a 2-dimensional surface in

3-dimensional space over all time. This alternative system means that a tachyonic

particle will pass through this surface in a finite time and will also pass through a

parallel surface a finite distance away in a finite time. In what follows we consider

the surface to be the xy-plane (z = 0).

4.1 Solutions of K-G equation

The solutions, ψ(x, t), to the Klein-Gordon equation are plane waves of the form

ψ(x) = ψ(x, t) = e−ipµp
µ

= ei(p·x−Et). (4.1)

For ordinary matter

pµp
µ = E2 − p · p = E2 − p2 = m2 (4.2)

or rewriting the equation

E2 −m2 = p2, (4.3)
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which shows that E ≥ m or E ≤ −m.

However, for tachyonic matter

pµp
µ = E2 − p · p = E2 − p2 = −m2 (4.4)

or

E2 +m2 = p2 (4.5)

and therefore E can have any finite value.

4.2 Conserved current density and orthogonality

In order to talk about causal commutators for ordinary matter and for tachyons

we need to consider a general superposition of plane waves using an orthogonality

property derived from a conserved current. Let

jµ1,2 = iψ∗1(x)
←→
∂µψ2(x) = i [ψ∗1(x)∂µψ2(x)− (∂µψ∗1(x))ψ2(x)] (4.6)

∂µj
µ
1,2(x) = 0 (4.7)

be a generalized conserved current density for any two solutions, ψ1(x) and ψ2(x),

of the Klein-Gordon equation. If we integrate this local conservation law over a 3-

dimensional volume containing all the solutions we will have

d

dt

∫
d3x j0

1,2(x, t) = 0. (4.8)

Explicitly substituting the two solutions into this integral will give

d

dt

∫
d3x i[ψ∗1(x)∂0ψ2(x)− (∂0ψ∗1(x))ψ2(x)]

=
d

dt

∫
d3x i{e−i(p1·x−E1t)∂0ei(p2·x−E2t) − [∂0e−i(p1·x−E1t)]ei(p2·x−E2t)}
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=
d

dt

∫
d3x 2(E1 + E2){e−i(p1·x−E1t) ei(p2·x−E2t)}

=
d

dt

∫
d3x 2(E1 + E2){e−i((p1−p2)·x−(E1−E2)t)}

=
d

dt

∫
d3x 2(E1 + E2){e−i(p1−p2)·x ei(E1−E2)t}

=
d

dt

[
2(E1 + E2) δ3(p1 − p2) ei(E1−E2)t

]
= 0. (4.9)

For the integral itself to be non-zero p1 must equal p2. Then the derivative of the

integral is equal to zero if E1 = E2 (integral no longer a function of t) or if E1 = −E2

(integral vanishes), and this represents the orthogonality of positive and negative

energy solutions of the Klein-Gordon equation.

4.3 Causal Commutators for Ordinary Matter

As noted in section 1.5 the Klein-Gordon equation in Cartesian coordinates is

[∂t
2 −∇2 +m2]φ(x) = 0 (4.10)

whose general solutions in the case of a complex field are

φ(x) =

∫
d3k√
ω(2π)3

[a(k)ei(k·x−ωt) + b†(k)e−i(k·x−ωt)] (4.11)

φ†(x) =

∫
d3k√
ω(2π)3

[b(k)ei(k·x−ωt) + a†(k)e−i(k·x−ωt)], (4.12)

where a(k), a†(k), b(k) and b†(k) are coefficients representing annihilation or cre-

ation operators. These operators obey the following equal-time commutator relations

(ETCR):

[a(k), a†(k′)] = δ3(k− k′) (4.13)

[b(k), b†(k′)] = δ3(k− k′). (4.14)

All other commutators vanish. We now calculate the commutator of the field with

its adjoint at two different space-time points.
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[φ(x), φ†(x′)] =

∫
d3k√
ω(2π)3

∫
d3k′√
ω(2π)3

[
a(k)ei(k·x−ωt) + b†(k)e−i(k·x−ωt)

] [
b(k′)ei(k

′·x′−ωt′) + a†(k′)e−i(k
′·x′−ωt′)]

−
[
b(k′)ei(k

′·x′−ωt′) + a†(k′)e−i(k
′·x′−ωt′)] [a(k)ei(k·x−ωt) + b†(k)e−i(k·x−ωt)

]
.

Carrying out the multiplications and using equations (4.13) and (4.14) we arrive

at

[φ(x), φ†(x′)] =

∫
d3k

ω(2π)3
{ei[k·(x−x′)−ω(t−t′)] − e−i[k·(x−x′)−ω(t−t′)]}

=

∫
d3k

ω(2π)3
(2i) sin[k · (x− x′)− ω(t− t′)]

= 2i

∫
d3k

ω(2π)3
{sin[k · (x− x′)] cos[ω(t− t′)]− cos[k · (x− x′)] sin[ω(t− t′)]}.

(4.15)

The first term under the integral integrates to zero since the sine function is an odd

function and the limits of integration are understood to be from −∞ to +∞, and we

are left with

[φ(x), φ†(x′)] =
−i
4π3

∫
d3k cos(k · r)

sin[ω(t− t′)]
ω

, (4.16)

where r = (x− x′). Now to the integrand in equation (4.16) we can add a term which

integrates to zero, i.e. −i sin(k · r) sin[ω(t−t′)]
ω

and the integral then becomes
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[φ(x), φ†(x′)] =
−i
4π3

∫
d3k

ω
[cos(k · r) sin[ω(t− t′)] + i sin(k · r) sin[ω(t− t′)] ]

=
−i
4π3

∫
d3k

ω
[cos(k · r) + i sin(k · r)] sin[ω(t− t′)]

=
−i
4π3

∫
d3k eik·r

sin[ω(t− t′)]
ω

.

Let k · r = kr cos θ and write the integral using spherical coordinates (for k-space) so

that

[φ(x), φ†(x′)] =
−i
4π3

∫
d3k eikr cos θ sin[ω(t− t′)]

ω

=
−i
4π3

∫ ∞
0

k2 dk

∫ 2π

0

dφ

∫ π

0

sin θ eikr cos θ dθ
sin[ω(t− t′)]

ω
.

After carrying out the φ and θ integrations we get

[φ(x), φ†(x′)] =
−i
4π3

∫ ∞
0

k2 dk (2π)
eikr − e−ikr

ikr

sin[ω(t− t′)]
ω

=
−i
2π2

∫ ∞
0

k2 dk
2 sin kr

kr

sin[ω(t− t′)]
ω

=
i

π2

1

r

d

dr

∫ ∞
0

dk cos(kr)
sin[ω(t− t′)]

ω
. (4.17)

This last integral is causal, i.e. it vanishes if |r| = r > |t− t′| (Schwartz, 2016).
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4.4 Causal Commutators for Tachyon Fields

The Klein-Gordon equation for tachyons has a −m2 in the place of +m2 and is

therefore

[∂t
2 −∇2 −m2]φ(x) = 0. (4.18)

Since the mass shell for tachyons is different from that for ordinary matter the wave

functions will use different variables representing the different geometrical structure

for describing tachyonic solutions. For complex tachyons

φ(x) =

∫ ∞
−∞

dω

√
k√

(2π)3

∫
d2k̂ ei(kk̂·x−ωt)a(ω, k̂), k = +

√
ω2 +m2, (4.19)

φ†(x′) =

∫ ∞
−∞

dω′
√
k′√

(2π)3

∫
d2k̂′ e−i(k

′k̂′·x′−ω′t′)a†(ω′, k̂′), (4.20)

where k (k′) is split into its magnitude k (k′) and its direction k̂ (k̂′).

The commutator between a(ω, k̂) and a†(ω′, k̂′) is postulated to be

[a(ω, k̂), a†(ω′, k̂′)] = δ(ω − ω′) δ2(k̂ − k̂′) η · k̂. (4.21)

The vector η is chosen to be orthogonal to some reference plane (x-y plane) for the

quantization we are after. In the case of tachyons we could choose η = (0, 0, 0, 1).

Now the commutator relation between the fields will be

[φ(x), φ†(x′)] =

∫ ∞
−∞

dω

(2π)3
e−iω(t−t′)

∫
d2k̂ eikk̂·(x−x

′) k η · k̂

= −i 4π

(2π)3
η · ∇

∫ ∞
−∞

dω e−iω(t−t′) sin(kr)

kr
, (4.22)

where r = |x− x′|. This integral is causal for tachyons and vanishes for |t − t′| > r

(Schwartz, 2016).
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4.5 Charge and Number Operators

For ordinary matter the charge, Q, of the scalar field is a conserved quantity

and is given by

Q =

∫
j0(x) d3x = i

∫
[φ†(x) ∂0φ(x)− (∂0φ†(x)) φ(x)] d3x. (4.23)

Inserting the explicit form of the field operators and using normal ordering we have

Q = i

∫
: φ†(x) ∂0φ(x)− (∂0φ†(x)) φ(x) : d3x

=

∫
d3k

(2π)3 2ωk
[a†(k)a(k)− b†(k)b(k)] =

∫
d3k

(2π)3 2ωk
[Na(k)−Nb(k)], (4.24)

where a(k), a†(k) are respectively annihilation and creation operators for matter and

b(k), b†(k) are similarly for antimatter, and Na(k), Nb(k) are the number operators

for particles and antiparticles respectively.

In the case of tachyons the charge for a scalar field will be

Qη =

∫
dt d2x⊥ η · j =

∫ ∞
−∞

dω

∫
d2k̂ η · k̂ a†(ω, k̂) a(ω, k̂). (4.25)

It appears that a† a would be interpreted as the number operator, i.e. the number of

particles per unit interval of frequency/energy per unit of solid angle in the direction

of momentum.
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CHAPTER 5

Hawking Radiation from Schwarzschild Black Holes

5.1 Hawking Radiation for Massless Fields

5.1.1 Classical considerations

Consider a widely dispersed mass of low density at early times so that spacetime

is almost flat (Minkowski space). Imagine that this mass collapses in a finite proper

time to form a black hole. Further, suppose this black hole is a Schwarzschild black

hole (no angular momentum, no charge) (Hawking 1975). The line element is

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2, (5.1)

where we let G = c = 1.

The outgoing radial null geodesics generate the event horizon at r = 2M . The

apparent singularity at r = 2M is not a physical singularity and can be eliminated

by using other coordinates.

As described by Hawking (1975) the massless quanta are generated just before

the collapsing mass forms an event horizon and becomes a black hole. The description

of these quanta at late times is determined by null geodesics at early times that move

inward, pass through the collapsing body and emerge as radial outgoing geodesics

that reach I+ (future null infinity) at arbitrarily late times.

We can affinely parameterize the geodesic xµ = xµ(λ) such that the geodesic

path is a linear function of λ. Then D
dλ

(dx
µ

dλ
) = 0, where D

dλ
is the covariant derivative

with respect to λ. Taking the Lagrangian to be

L =
1

2
gµν

dxµ

dλ

dxν

dλ
, (5.2)

34



then the geodesic between points a and b is found by using the variational method

I =

∫ b

a

Ldλ. (5.3)

If gµν (and therefore L) is independent of a coordinate xµ then, using the Euler-

Lagrange equation, the conjugate momentum will be a constant for this geodesic,

i.e.

pµ =
∂L

∂(dx
µ

dλ
)

= gµν
dxν

dλ
= constant. (5.4)

The Schwarzschild metric depends only on r and θ which implies that pt and pφ are

constant. So, in the plane with θ = π
2
,

pt = g00
dt

dλ
=

(
1− 2M

r

)
dt

dλ
= E (5.5)

pφ = g33
dφ

dλ
= r2dφ

dλ
= L. (5.6)

For null geodesics equation (5.2) is equal to zero and(
dr

dλ

)2

+
L2

r2

(
1− 2M

r

)
= E2. (5.7)

For radial geodesics L = 0 so
dr

dφ
= 0 and

dr

dλ
= ±E, (5.8)

with + sign for outgoing geodesics and - sign for incoming geodesics. From equations

(5.5) and (5.8) we get (Parker and Toms 2009)

dt

dλ
∓
(

1− 2M

r

)−1
dr

dλ
= 0. (5.9)

If we define r∗ = r + 2M ln(r − 2M) then

dr∗

dr
=

(
1− 2M

r

)−1

(5.10)
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and

d

dλ
(t∓ r∗) = 0. (5.11)

As r → 2M from the right r∗ → −∞. The null coordinate

u = t− r∗ (5.12)

is for outgoing radial geodesics and the null coordinate

v = t+ r∗ (5.13)

is for incoming radial geodesics. By equation (5.11) each is equal to a constant.

Given C, an incoming radial null geodesic, then v = v1 for some v1 = constant

corresponding to C. C passes through the event horizon of the Schwarzschild black

hole with λ an affine parameter along C. The null coordinate u along C is given by

u(λ), the form of which just exterior to the event horizon will determine the spectrum

of particles created by the black hole. Along C

du

dλ
=
dt

dλ
− dr∗

dλ
=
dt

dλ
− dr∗

dr

dr

dλ
= 2

(
1− 2M

r

)−1

E. (5.14)

Since
dr

dλ
= −E along C, after integrating we get

r − 2M = −Eλ, (5.15)

where λ = 0 for r = 2M . Note that for r > 2M , λ < 0. From equation (5.15)(
1− 2M

r

)−1

= 1− 2M

Eλ
(5.16)

and therefore, from equation (5.14)

du

dλ
= 2E − 4M

λ
. (5.17)

Integrating this equation we then obtain on the incoming null geodesic C

u = 2Eλ− 4M ln

(
λ

K1

)
, (5.18)
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where K1 is a negative constant. At great distance from the event horizon u ≈ 2Eλ,

whereas near the event horizon

u ≈ −4M ln

(
λ

K1

)
(5.19)

(λ = 0 at the event horizon). Note that u = −∞ on I−, the past null infinity, and

u = +∞ at the event horizon.

Figure 5.1 Penrose Diagram where i+ is future timelike infinity, i− is past timelike
infinity, i0 is spacelike infinity. See text for other symbol definitions.
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As Parker explains, since I− is far from the collapsing body, then the coordinate

v is an affine parameter along I− related to λ such that v0− v = K2λ, where K2 is a

negative constant and v0 is the last incoming ray that passes through the body and

reaches I+. Therefore,

u(v) = −4M ln

(
λ

K1

)
= −4M ln

(
v0 − v
K1K2

)
, (5.20)

(K1K2 > 0). This relation determines the spectrum of created particles by the black

hole that will be observed at late times.

5.1.2 Quantum aspects

The massless quantized Hermitian scalar, φ, satisfies the Klein-Gordon equation

(Hawking 1975)

(−g)−1/2∂µ[(−g)1/2gµν∂νφ] = 0 (5.21)

or

∂µ∂µφ = 0 (5.22)

in the case of the Minkowski metric.

The particles observed at late times are created a short affine distance outside the

event horizon. The field of the entire spacetime exterior to the collapsing body forming

the Schwarzschild black hole can be written as (Parker and Toms 2009)

φ =

∫
dω(aωfω + a†ωf

∗
ω), (5.23)

where the fω and f ∗ω are a complete set of solutions of equation (5.23) and satisfy the

normalization

(fω1 , fω2) = δ(ω1 − ω2). (5.24)
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The operators aω and a†ω are time-independent and obey the commutation relations

[aω1 , a
†
ω2

] = δ(ω1 − ω2) (5.25)

[aω1 , aω2 ] = [a†ω1
, a†ω2

] = 0, (5.26)

where the aω are annihilation operators and the a†ω are creation operators.

Inertial observers at early times and great distance from the collapsing body

detect physical particles with well-defined positive frequency solutions of the wave

equation. Choose fω to form a complete set of incoming positive frequency solutions

with energy ω at early times and large distances. On I− the asymptotic form is

fω ∼ ω−
1
2 r−1e−iωvY (θ, φ), (5.27)

where v = t + r is the incoming null coordinate (quantum numbers l, n on Y sup-

pressed). The operator aω is then the annihilation operator.

By making the expansion of the field in terms of positive frequencies at late times

we will be able to calculate the spectrum of particles created. In the Schwarzschild

black hole spacetime the solutions of equation (5.21) are uniquely determined by giv-

ing data on both the event horizon and on I+, the future null infinity, since I+ is not

a Cauchy surface.

On I+ as on I−, positive frequency solutions are well-defined (inertial observer

in Minkowski space). Let pω be solutions to equation (5.21) which have no Cauchy

data on the event horizon and which are asymptotically outgoing with positive fre-

quency on I+. Also, let pω and p∗ω form a complete set of solutions on I+ as well as

satisfying the normalization condition

(pω1 , pω2) = δ(ω1 − ω2). (5.28)

The asymptotic form will be

pω ∼ ω−
1
2 r−1e−iωuY (θ, φ), (5.29)
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where u = t − r is the outgoing null coordinate on I+. A superposition of the pω

forms an outgoing and localized wave packet at late times and large r.

As noted pω has no Cauchy data on the event horizon so the most general

solution must also include a set of solutions, qω, with modes defined on the event

horizon. The qω will have zero Cauchy data on I+. The form of the qω will not be

the same as that of the pω since the qω will be solutions near the event horizon which

is not Minkowski, but we will not need their form for calculating the spectrum of

particles on I+. Let the qω and q∗ω form a complete set of solutions on the horizon

with normalization

(qω1 , qω2) = δ(ω1 − ω2). (5.30)

At late times the pω and qω are solutions in disjoint regions and therefore

(qω1 , pω2) = 0. (5.31)

Also, (qω1 , q
∗
ω2

) = (qω1 , p
∗
ω2

) = (pω1 , p
∗
ω2

) = 0. So we can then expand φ in the entire

spacetime as

φ =

∫
dω(bωpω + b†ωp

∗
ω + cωqω + c†ωq

∗
ω), (5.32)

where the bω are annihilation operators for particles outgoing at late times at infinity.

The commutation relations are

[bω1 , b
†
ω2

] = δ(ω1 − ω2), [cω1 , c
†
ω2

] = δ(ω1 − ω2). (5.33)

All other commutation relations between bω1 and cω2 are zero.

Let the state vector, |0〉, be chosen to have no particles of the field incoming

from I−, where we are in the Heisenberg picture and |0〉 is independent of time. Then

aω|0〉 = 0. (5.34)
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The outgoing particles form a spectrum determined by the Bogoliubov transformation

giving bω in terms of aω′ and a†ω′ (Fulling, 1989; Parker and Toms, 2009). Since the

fω and the f ∗ω are a complete set for any solution, then we can write

pω =

∫
dω′(αωω′fω′ + βωω′f

∗
ω′), (5.35)

where αωω′ and βωω′ are complex numbers independent of the coordinates. They are

the Bogoliubov coefficients.

The relations below are noted from Parker and Toms (2009).

bω = (pω, φ) (5.36)

bω =

∫
dω′(α∗ωω′aω′ − β∗ωω′a

†
ω′) (5.37)

(pω1 , pω2) =

∫
dω′(α∗ω1ω′αω2ω′ − β∗ω1ω′βω2ω′) (5.38)

βωω′ = −(f ∗ω′ , pω) (5.39)

αωω′ = (fω′ , pω). (5.40)

Form a wave packet from pω in a frequency range around ω. The components

of pω in terms of fω′ and f ∗ω′ can be found from equation (5.35). This wave packet

approaches I+ along an outgoing (from the event horizon) null geodesic characterized

by a large value for u. Now we follow this wave packet backward in time. Part of this

wave packet will be scattered by the curved geometry near the black hole and will

reach I− with frequency near the original frequency ω. Another part of this wave

packet will pass through the collapsing body and reach I− as a superposition of the

fω′ and f ∗ω′ and ω′ will be highly blueshifted (ω′ � ω).

As a result, the non-scattered part of pω can also be expressed in terms of fω′

and f ∗ω′ by using equation (5.35) with coefficients αωω′ and βωω′ and ω′ � ω. As the

values of ω′ become arbitrarily large at late times (u → ∞), the late time spectrum
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of outgoing particles will be determined by the asymptotic form of βωω′ .

Trace this second part of pω back along the outgoing geodesic having a very

large value for u. As this wave packet passes through the collapsing body it emerges

on an incoming geodesic whose value, v, is very close to v0, the last incoming ray to

pass through the collapsing body and reach I+. The value u is related to v and v0

by equation (5.20)

u(v) = −4M ln

(
v0 − v
K

)
, (5.41)

where K = K1K2 > 0 characterizes the affine parameter near I+ and I−. The center

of this wave packet for a small range of frequencies near ω and asymptotic form of pω

near I+ is determined by the principle of stationary phase. Therefore, for this part

of the wave packet, the asymptotic form for pω is

pω ∼ ω−
1
2 r−1e−iωuY (θ, φ). (5.42)

The asymptotic form for fω′ in the expansion of pω has the form given in equation

(5.27) with v < v0 (v > v0 are rays that enter the black hole).

The Bogolubov coefficients are related to fω and pω by

αωω′ = (fω′ , pω) = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

eiω
′ve−iωu (5.43)

βωω′ = −(f ∗ω′ , pω) = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

e−iω
′ve−iωu, (5.44)

where C is a constant.

Following Parker and Toms (2009), for null geodesic coordinates u and v with an

affine parameter, u can be represented as a function of v, i.e.

u(v) = −4M ln

(
v0 − v
K

)
, (5.45)
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where K is a positive constant. Now substitute for u(v) and let s ≡ v0−v in equation

(5.43) and s ≡ v − v0 in equation (5.44). Then

αωω′ = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

eiω
′veiω4M ln(

v0−v
K

)

= −C
∫ 0

∞
ds

(
ω′

ω

) 1
2

e−iω
′seiω

′v0eiω4M ln( s
K

) (5.46)

βωω′ = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

e−iω
′veiω4M ln(

v0−v
K

)

= C

∫ 0

−∞
ds

(
ω′

ω

) 1
2

e−iω
′se−iω

′v0eiω4M ln(− s
K

). (5.47)

Continuing to follow Parker and Toms (2009) αωω′ can be integrated along the pos-

itive s-axis, a quarter circle at infinity around the 4th quadrant and then along the

imaginary axis from −i∞ to 0. The βωω′ integral’s contour will be along the real axis,

a quarter circle at infinity around the 3rd quadrant and then along the imaginary axis

from −i∞ to 0. In both cases the integral along the imaginary axis is equal to that

along the real axis, so we substitute s ≡ is′. Therefore, we have

αωω′ = −iC
∫ 0

−∞
ds′
(
ω′

ω

) 1
2

eω
′s′eiω

′v0eiω4M ln( is
′

K
) (5.48)

βωω′ = iC

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

eω
′s′e−iω

′v0eiω4M ln(−is
′

K
). (5.49)

Taking a branch cut along the negative real axis to make the logarithm single-valued

and noting that s′ < 0 we have

ln

(
is′

K

)
= ln

(
−i|s′|
K

)
= −iπ

2
+ ln

(
|s′|
K

)
(5.50)

and

ln

(
−is′

K

)
= ln

(
i|s′|
K

)
= i

π

2
+ ln

(
|s′|
K

)
. (5.51)
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Then

αωω′ = −iCeiω′v0e2πωM

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

eω
′s′eiω4M ln(

|s′|
K

), (5.52)

and

βωω′ = iCe−iω
′v0e−2πωM

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

eω
′s′eiω4M ln(

|s′|
K

). (5.53)

Thus, after squaring the absolute value of αωω′ and βωω′ and dividing α by β we find

that

|αωω′ |2 = e8πMω|βωω′ |2. (5.54)

This result is for the wave packet traced back in time through the collapsing body

just before the event horizon formed (Hawking, 1975).

The wave packet, pω, that reaches I+ is formed in two parts. Tracing pω backward

in time, one part, p
(1)
ω , is scattered by the spacetime around the collapsing body and

reaches I− with the same frequency, ω, that it had on I+. The other part, p
(2)
ω , passes

through the collapsing body and reaches I−. The two parts are disjoint regions on

I−, v > v0 for p
(1)
ω and v < v0 for p

(2)
ω . So pω = p

(1)
ω + p

(2)
ω and

(pω1 , pω2) = (p(1)
ω1
, p(1)

ω2
) + (p(2)

ω1
, p(2)

ω2
). (5.55)

If Γ(ω1) is the fraction of pω1 corresponding to p
(2)
ω1 , then 1 − Γ(ω1) is the fraction

corresponding to p
(1)
ω1 . From equation (5.28) we have

(p(2)
ω1
, p(2)

ω2
) = Γ(ω1)δ(ω1 − ω2) (5.56)

and

(p(1)
ω1
, p(1)

ω2
) = (1− Γ(ω1))δ(ω1 − ω2). (5.57)

Using equations (5.38) and (5.56) leads to

Γ(ω1)δ(ω1 − ω2) =

∫
dω′(α∗ω1ω′αω2ω′ − β∗ω1ω′βω2ω′), (5.58)
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where now αωω′ and βωω′ are the Bogoliubov coefficients in the expansion of p
(2)
ω in

terms of fω′ and f ∗ω′ . As in equation (5.36) b
(2)
ω = (p

(2)
ω , φ).

In what follows we will no longer use the superscript (2) with the understanding

that now bω = b
(2)
ω . The bω contain the information about the particles created during

the collapse of the body. If we try to calculate

〈0|b†ωbω|0〉 =

∫
dω′|bωω′ |2 (5.59)

we find that the integral is infinite as a result of δ(ω1 − ω2) in equation (5.58). The

term 〈0|b†ωbω|0〉 should be the total number of particles per unit angular frequency

reaching I+. However, this flux of particles is steady in time and therefore some

adjustment accounting for time must be made. To see this let

δ(ω1 − ω2) = lim
t→∞

1

2π

∫ t/2

−t/2
dt′ ei(ω1−ω2)t′ . (5.60)

Then if ω1 = ω2 = ω, and using equation (5.54)

lim
t→∞

Γ(ω)
t

2π
=

∫
dω′(|αωω′ |2 − |βωω′ |2) = (e8πMω − 1)

∫
dω′|βωω′ |2. (5.61)

We then obtain

〈0|b†ωbω|0〉 = lim
t→∞

t

2π
Γ(ω)(e8πMω − 1)−1. (5.62)

We can view this result as the number of particles created per unit angular frequency

per unit time which, at late times, pass through a surface of radius much greater than

that of the event horizon. This flux of created particles is equal to

1

2π
Γ(ω)(e8πMω − 1)−1. (5.63)

In equation (5.63) Γ(ω) is the fraction of an outgoing wave packet that if extended

backward in time would pass through the collapsing body just before the formation of

the event horizon. However, if the collapsing body spacetime were replaced with the
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analytic extension of the black hole spacetime, then this fraction is the same fraction

of the wave packet that would enter the black hole past event horizon at late times

(Hawking, 1975). This means that Γ(ω) is also the fraction of an incoming wave

packet from I− that would be absorbed by the black hole. The implication, then, is

that a Schwarzschild black hole absorbs and emits radiation exactly like a gray body

of absorptivity Γ(ω) and with temperature, T , given by

kBT = (8πM)−1 =
κ

2π
, (5.64)

where kB is Boltzmann’s constant and κ = 1
4M

is the surface gravity of the black hole.

5.2 Hawking Radiation for Massless Fields for Higher-Derivative Klein-

Gordon Equation

The Klein-Gordon equation in spherical coordinates for massless fields is

(−g)−1/2∂µ[(−g)1/2gµν∂νφ] = 0, (5.65)

where gµν is the metric tensor, (−g) is the determinant of gµν and φ is the solution

to the equation (Parker and Toms, 2009).

In the case of a Schwarzschild black hole the metric exterior to the event horizon is

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2. (5.66)

Near the event horizon the solution to the K-G equation is not expressible with ele-

mentary functions, but at great distance and time the Schwarzschild metric becomes

asymptotically Minkowski.

The field solution of the K-G equation can be written for the entire spacetime outside

the event horizon as

φ =

∫
dω(aωfω + a†ωf

∗
ω), (5.67)
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where the fω and f ∗ω are a complete set of solutions to the K-G equation and the aω

and a†ω are time-independent operators. Further, the inner product is defined as

(fω1 , fω2) ≡ i

∫
d3x|g|1/2g0νf ∗ω1

(x, t)
↔
∂νfω2(x, t), (5.68)

and fω1 and fω2 satisfy

(fω1 , fω2) = δ(ω1 − ω2). (5.69)

The canonical commutation relations

[aω1 , a
†
ω2

] = δ(ω1 − ω2) (5.70)

[aω1 , aω2 ] = 0 = [a†ω1
, a†ω2

] (5.71)

imply that aω are annihilation operators and a†ω are creation operators.

In Minkowski space the K-G equation for a massless field using spherical coor-

dinates is (
∂2

∂t2
−∇2

)
φ =

(
∂2

∂t2
−∇2

r −∇2
Ω

)
φ = 0, (5.72)

where the Laplacian is split into its radial and angular parts. The general solution to

this equation is

φ = R(r)Y ml
l (θ, φ)e−iωt, (5.73)

where the Y’s are spherical harmonics (and the φ in Y’s argument is obviously not

the same φ as the solution).

So we have (
∂2

∂t2
−∇2

r −∇2
Ω

)
R(r)Y ml

l (θ, φ)e−iωt = 0 (5.74)

or

Y ml
l (θ, φ)e−iωt

(
∂2R

∂r2
+

2

r

∂R

∂r
− l(l + 1)

r2
R + ω2R

)
= 0. (5.75)
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(ω2 = ω2
0 + k2 but ω0 = 0 in massless case).

Therefore, the radial K-G equation is(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ ω2

)
R = 0. (5.76)

The solution is R(r) =
√

2
π
ωjl(ωr), where jl(ωr) is the spherical Bessel function.

Again using spherical coordinates, the higher-derivative K-G equation is(
∂2

∂t2
−∇2

r −∇2
Ω

)2

φ = 0, (5.77)

where now φ is a solution to a fourth order differential equation. This equation has

mixed derivatives of the time function, the radial function and the angular function.

However, when considering Hawking radiation we are observing at late times, i.e. at

great distances and times from the black hole. Thus we are observing basically at

one spatial point at a large radial distance from the black hole. As Parker and Toms

(2009) do, we can consider the radiation in the equatorial plane of the black hole

(θ = π
2
) and at a fixed angular coordinate φ. This has the advantage of eliminating

derivatives with respect to θ and to φ as well as eliminating the separation constants

ml and l(l + 1). The equation we arrive at is(
d4

dr4
+

4

r

d3

dr3
+ 2ω2 d

2

dr2
+

4ω2

r

d

dr
+ ω4

)
R = 0. (5.78)

Solutions to this are

R(r) = c1
e−iωr

r
+ c2

eiωr

r
+ c3e

−iωr + c4e
iωr, (5.79)

where the c’s are constants.

The first and second terms are solutions to the standard K-G equation. The third

and fourth terms are additional solutions due to the higher-derivative K-G. So in the

H-D K-G equation the field solutions will have one part, φ1, from the solutions to
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the standard K-G equation and another part, φ2, from the additional solutions to the

H-D K-G equation, i.e. φ = φ1 + φ2. The φ1 solutions have already been dealt with

in Parker and Toms (2009). In what follows for the rest of this section, the operators,

functions, constants, etc. are understood to be applying to the φ2 solution. Thus, φ2

can be written

φ2 =

∫
dω(aωfω + a†ωf

∗
ω). (5.80)

On I+ pω and p∗ω form a complete set of solutions

pω =

∫
dω′(αωω′fω′ + βωω′f

∗
ω′), (5.81)

where αωω′ and βωω′ are Bogoliubov coefficients.

Asymptotic forms of fω and pω are

fω ∼ ω−
1
2 e−iωvY (θ, φ), (5.82)

pω ∼ ω−
1
2 e−iωuY (θ, φ), (5.83)

where v = t+ r and u = t− r.

The Bogoliubov coefficients are related to fω and pω by

αωω′ = (fω′ , pω) = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

r2eiω
′ve−iωu (5.84)

βωω′ = −(f ∗ω′ , pω) = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

r2e−iω
′ve−iωu, (5.85)

where C is a constant.

Following Parker and Toms (2009), for null geodesic coordinates u and v with an

affine parameter, u can be represented as a function of v, i.e.

u(v) = −4M ln

(
v0 − v
K

)
, (5.86)
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where K is a positive constant. Now substitute for u(v) and let s ≡ v0−v in equation

(5.84) and s ≡ v − v0 in equation (5.85). Then from equation (5.84)

αωω′ = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

r2eiω
′veiω4M ln(

v0−v
K

)

= −C
∫ 0

∞
ds

(
ω′

ω

) 1
2

r2e−iω
′seiω

′v0eiω4M ln( s
K

) (5.87)

and from eq.(5.85)

βωω′ = C

∫ v0

−∞
dv

(
ω′

ω

) 1
2

r2e−iω
′veiω4M ln(

v0−v
K

)

= C

∫ 0

−∞
ds

(
ω′

ω

) 1
2

r2e−iω
′se−iω

′v0eiω4M ln(− s
K

). (5.88)

That the integrals in equations (5.87) and (5.88) converge is shown in an addendum.

Continuing to follow Parker and Toms (2009) αωω′ can be integrated along the pos-

itive s-axis, a quarter circle at infinity around the 4th quadrant and then along the

imaginary axis from −i∞ to 0. The βωω′ integral’s contour will be along the real axis,

a quarter circle at infinity around the 3rd quadrant and then along the imaginary axis

from −i∞ to 0. In both cases the integral along the imaginary axis is equal to that

along the real axis, so we substitute s ≡ is′. Therefore, we have

αωω′ = −iC
∫ 0

−∞
ds′
(
ω′

ω

) 1
2

r2eω
′s′eiω

′v0eiω4M ln( is
′

K
) (5.89)

βωω′ = iC

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

r2eω
′s′e−iω

′v0eiω4M ln(−is
′

K
). (5.90)

Taking a branch cut along the negative real axis to make the logarithm single-valued

and noting that s′ < 0 we have

ln

(
is′

K

)
= ln

(
−i|s′|
K

)
= −iπ

2
+ ln

(
|s′|
K

)
(5.91)

and

ln

(
−is′

K

)
= ln

(
i|s′|
K

)
= i

π

2
+ ln

(
|s′|
K

)
. (5.92)
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Then

αωω′ = −iCeiω′v0e2πωM

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

r2eω
′s′eiω4M ln(

|s′|
K

), (5.93)

and

βωω′ = iCe−iω
′v0e−2πωM

∫ 0

−∞
ds′
(
ω′

ω

) 1
2

r2eω
′s′eiω4M ln(

|s′|
K

). (5.94)

Thus, after squaring the absolute value of αωω′ and βωω′ and dividing α by β we find

that

|αωω′ |2 = e8πMω|βωω′ |2. (5.95)

This result is for the wave packet traced back in time through the collapsing body

just before the event horizon formed.

The wave packet, pω, that reaches I+ is formed in two parts. Tracing pω backward

in time, one part, p
(1)
ω , is scattered by the spacetime around the collapsing body and

reaches I− with the same frequency, ω, that it had on I+. The other part, p
(2)
ω , passes

through the collapsing body and reaches I−. The two parts are disjoint regions on

I−, v > v0 for p
(1)
ω and v < v0 for p

(2)
ω . So pω = p

(1)
ω + p

(2)
ω and

(pω1 , pω2) = (p(1)
ω1
, p(1)

ω2
) + (p(2)

ω1
, p(2)

ω2
). (5.96)

If Γ(ω1) is the fraction of pω1 corresponding to p
(2)
ω1 , then 1 − Γ(ω1) is the fraction

corresponding to p
(1)
ω1 . From equation (5.28) we have

(p(2)
ω1
, p(2)

ω2
) = Γ(ω1)δ(ω1 − ω2) (5.97)

and

(p(1)
ω1
, p(1)

ω2
) = (1− Γ(ω1))δ(ω1 − ω2). (5.98)

Using equations (5.38) and (5.56) leads to

Γ(ω1)δ(ω1 − ω2) =

∫
dω′(α∗ω1ω′αω2ω′ − β∗ω1ω′βω2ω′), (5.99)
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where now αωω′ and βωω′ are the Bogoliubov coefficients in the expansion of p
(2)
ω in

terms of fω′ and f ∗ω′ . As in equation (5.36) b
(2)
ω = (p

(2)
ω , φ).

In what follows we will no longer use the superscript (2) with the understanding

that now bω = b
(2)
ω . The bω contain the information about the particles created during

the collapse of the body. If we try to calculate

〈0|b†ωbω|0〉 =

∫
dω′|bωω′ |2 (5.100)

we find that the integral is infinite as a result of δ(ω1 − ω2) in equation (5.99). The

term 〈0|b†ωbω|0〉 should be the total number of particles per unit angular frequency

reaching I+. However, this flux of particles is steady in time and therefore some

adjustment accounting for time must be made. To see this let

δ(ω1 − ω2) = lim
t→∞

1

2π

∫ t/2

−t/2
dt′ ei(ω1−ω2)t′ , (5.101)

where t and t′ are time. Then if ω1 = ω2 = ω, and using equation (5.95)

lim
t→∞

Γ(ω)
t

2π
=

∫
dω′(|αωω′|2 − |βωω′|2) = (e8πMω − 1)

∫
dω′|βωω′|2. (5.102)

We then obtain

〈0|b†ωbω|0〉 = lim
t→∞

t

2π
Γ(ω)(e8πMω − 1)−1. (5.103)

We can view this result as the number of particles created per unit angular frequency

per unit time which, at late times, pass through a surface of radius much greater than

that of the event horizon. This flux of created particles is equal to

1

2π
Γ(ω)(e8πMω − 1)−1. (5.104)

In equation (5.104) Γ(ω) is the fraction of an outgoing wave packet that if extended

backward in time would pass through the collapsing body just before the formation of

the event horizon. However, if the collapsing body spacetime were replaced with the
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analytic extension of the black hole spacetime, then this fraction is the same fraction

of the wave packet that would enter the black hole past event horizon at late times.

This means that Γ(ω) is also the fraction of an incoming wave packet from I− that

would be absorbed by the black hole. The implication, then, is that a Schwarzschild

black hole absorbs and emits radiation exactly like a gray body of absorptivity Γ(ω)

and with temperature, T , given by

kBT = (8πM)−1 =
1

2π
κ, (5.105)

where kB is Boltzmann’s constant and κ = 1
4M

is the surface gravity of the black

hole. This additional radiation due to the second part of the higher-derivative Klein-

Gordon equation is equal to the radiation from the ordinary Klein-Gordon equation.

Thus, it appears that the higher-derivative Klein-Gordon equation simply doubles the

black hole Hawking radiation due to the ordinary Klein-Gordon equation for massless

spin-0 particles.

It appears that increasing higher order application of the Klein-Gordon equation

to the wave function leads to an increasingly unlimited emission of massless spin-0

particles from the black hole. This, of course, is physically impossible, but it is also

a moot point as there are no known massless spin-0 particles.

5.3 Hawking Radiation from Schwarzschild Black Holes for Massive Field

To see what Hawking radiation is for massive particles in curved spacetime we

must consider QFT in curved spacetime in more detail. Historically in QFT, positive

frequency modes, f , are defined as satisfying ∂f
∂t

= −iωf , where ω > 0. In Minkowski

spacetime there is no ambiguity about the definition of positive frequency modes

which provide a complete basis for the solutions to the equation of motion. In curved
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spacetime the Klein-Gordon equation given by many in the field (e.g. Hawking, 1975;

Parker and Toms, 2009; Birrell and Davies, 1982) is

(−g)−1/2∂µ[(−g)1/2gµν∂νφ] +m2φ = 0 (5.106)

and a positive frequency mode definition will be arbitrary so it will not be possible to

define unambiguously a vacuum nor a number operator. The question then becomes,

what would a particle detector detect traveling along some trajectory in curved space-

time. It measures the proper time, τ , and ”defines” positive frequencies with respect

to that proper time. If a set of modes can be found such that

D

dτ
fi = −i ωfi (5.107)

we could use these as the positive frequency modes. In general these will not exist

for all spacetime. But in the case of a static spacetime we will have a hypersurface-

orthogonal (timelike) Killing vector and there will exist a metric whose components

are independent of the time coordinate, t. In that case positive frequency modes can

be well defined and there are solutions which can be separated into time-independent

and space-independent factors, thus allowing unambiguous definitions of number op-

erators and vacuums. The Schwarzschild metric is such a static spacetime metric;

its coordinate components are time independent and there are no space-time cross

terms, i.e.

∂0gµν = 0, g0i = 0, (5.108)

where i is a spatial component index.

As pointed out on page 36, just before equation (5.14), the spectrum of the

created particles of Hawking radiation are determined by the form of u(λ). It is for
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this reason that for the null coordinate, u, of equation (5.18) we use an approximation

(equation (5.19)) made near the event horizon. That is,

u ≈ −4M ln

(
λ

K1

)
= −4M ln

(
v0 − v
K1K2

)
, (5.109)

where K1K2 > 0, near the event horizon.

For the Schwarzschild metric, there are two constants of the motion(
1− 2M

r

)
dt

dλ
= E and r2 dφ

dλ
= L, (5.110)

where λ is an affine parameter.

Using the constants of the motion, the geodesic equation for a massless particle trav-

eling radially ( L = 0 ) in this metric is(
1− 2M

r

)(
dt

dλ

)2

−
(

1− 2M

r

)−1(
dr

dλ

)2

= 0 (5.111)

or, (
dr

dλ

)2

= E2 (5.112)

and therefore

dr

dλ
= ±E. (5.113)

Equation (5.113) then defines null geodesics in the Schwarzschild metric, along which

massless particles travel with speed c, the speed of light. However, massive particles

travel on timelike geodesics and the geodesic equation in this case will be(
1− 2M

r

)(
dt

dτ

)2

−
(

1− 2M

r

)−1(
dr

dτ

)2

= 1, (5.114)

where τ is the proper time. Again, using the constants of the motion with L = 0, we

have

E2 −
(
dr

dτ

)2

=

(
1− 2M

r

)
(5.115)
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or, after rearranging (
dr

dτ

)2

= E2 − 1 +
2M

r
(5.116)

which is clearly different from equation (5.112) by the addition of −1 + 2M
r

on the

RHS.

As noted above the creation of particles by the intense gravitational field of

the black hole will occur just outside the event horizon and the minimum velocity of

these particles will be the escape velocity (otherwise they will not escape to infinity).

Of course, the velocity could be greater than the escape velocity, but we will use

v = vesc in the following calculations as that will be the minimum energy condition

to determine the particle geodesic equation. The escape velocity is

vesc =

(
2M

r

) 1
2

, (5.117)

where r ≥ 2M and at the event horizon vesc = 1, the speed of light. The massive

particles created will have velocities close to the speed of light and their timelike

geodesics will be very close to null geodesics. To see this let r = 2M + ε, where ε is

very small and 2M � ε > 0. Then the timelike geodesic equation will be(
dr

dτ

)2

= E2 − 1 +
2M

r
= E2 − 1 +

2M

2M + ε
= E2 − ε

2M + ε
∼= E2 − ε

2M
. (5.118)

To show that this is close to a null geodesic we need to show that
ε

2M
� E2 and so

we need an estimate of the size of E2. We note that

E2 = k2 +m2 = m2γ2v2 +m2 = m2(γ2v2 + 1), (5.119)

where k is the particle momentum, m is the rest mass of the particle and γ2 is

γ2 =
1

1− v2
=

1

1− 2M
2M+ε

=
2M + ε

ε
=

2M

ε
+ 1. (5.120)

56



So

E2 = m2(γ2v2 + 1) = m2

[(
2M + ε

ε

)(
2M

2M + ε

)
+ 1

]

= m2

(
2M

ε
+ 1

)
∼=

2Mm2

ε
, since

2M

ε
� 1. (5.121)

Finally, from equation (5.118) (for r = 2M + ε)(
dr

dτ

)2

∼= E2 − ε

2M
∼=

2Mm2

ε
− ε

2M
. (5.122)

For equation (5.122) to be close to E2 (null geodesic) we need

ε

2M
� 2Mm2

ε

ε2 � 4M2m2

ε� 2Mm. (5.123)

For ε to be much less than 2Mm there must exist a large positive number, N , such

that ε =
2Mm

N
.

Then from equation (5.121) E2 ∼=
2Mm2

ε
=

2Mm2

2Mm
N

= Nm

and from equation (5.118) −1 +
2M

r
∼=

ε

2M
=

2Mm
N

2M
=
m

N
(for r = 2M+ε). Since N

is a large positive number then Nm� m

N
and E2 � ε

2M
. Thus,

(
dr

dτ

)2

∼= E2 − ε

2M
∼= E2 (5.124)

and the geodesic equation for massive particles created near the event horizon is very

close to the null geodesic. As the created particles distance themselves from the
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black hole and their velocities decrease their geodesics will deviate more and more

from a null geodesic, but the particles, by then, are already created. It is during

this early phase of particle creation that determines the spectrum of created particles

observed at late times. The massive particles created will have a dispersion relation

ω =
√
k2 +m2. The massless particles have a dispersion relation ω = k. The k’s in

both dispersion relations will have the same spectrum of values. Thus, the spectrum

of massive particles created will be the same as that of massless particles created with

the only difference being the difference in the dispersion relation between the two.

The net result is that in the expression for the flux of created particles observed at

late times is just equation (5.63), i.e.

1

2π
Γ(ω)(e8πMω − 1)−1, (5.125)

but with the ω for massless particles, ω = k, now replaced with the ω for massive

particles, ω =
√
k2 +m2. The spectrum of particles will still be a thermal spectrum

given by equation (5.125).

As an example of what particles might be created and their likelihood of cre-

ation we note that we are dealing with the Klein-Gordon equation whose solutions

are scalar functions and the fields are spin-0. For an intermediate mass black hole on

the order of a solar mass, the event horizon temperature is ∼ 10−8 K. As Hawking

(1975) pointed out this is much less than the cosmic microwave background (CMB)

temperature and creation of any massive particle would be extremely rare. But for

much smaller black holes, perhaps primordial black holes, the event horizon surface

temperature is much higher, permitting a greater probability of massive particle cre-

ation. The only known spin-0 particle is the Higgs boson. If we consider a solar mass
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black hole, then using the Stefan-Boltzmann law of blackbody radiation, the event

horizon surface temperature in ordinary units is

T =
h̄ c3

8 π G kB M�
∼= 6× 10−8 K, (5.126)

where h̄ is the reduced Planck constant, c is the speed of light, G is the gravitational

constant, kB is Boltzmann’s constant and M� is the solar mass. This represents an

energy of

kBT ∼= 8× 10−31Joules, (5.127)

whereas for the Higgs particle the mass energy is ∼ 125 GeV ∼= 2 × 10−8 Joules,

exceeding the energy at the event horizon of a solar mass black hole by roughly 23

orders of magnitude. Thus, the creation of a Higgs particle near the event horizon of

a solar mass black hole is essentially zero. However, if the black hole is very small,

say on the order of 108 kg, then the event horizon temperature is orders of magnitude

higher so that the energy at the event horizon is comparable to the Higgs mass energy

and there is the likelihood of the creation of Higgs particles.

Zel’dovitch and Novikov (1966) first proposed that in the early universe, shortly

after the big bang, there were numerous black holes, called primordial black holes

(PBH). Later, Hawking (1971) and others made similar predictions. These PBH

would have long ago radiated away their masses, the final fraction of a second pro-

ducing an explosion releasing enormous amounts of energy. Some of the particles

created during this explosion could have been Higgs particles. If there had been large

numbers of these PBH, their disappearance due to radiation could possibly account

for the appearance of Higgs particles.
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5.4 Various Possibilities of Tachyonic Creation by Black Holes

As pointed out in chapter 3, the even order series higher-derivative Klein-

Gordon equation yields the Klein-Gordon equation for ordinary matter as well as the

”negative” Klein-Gordon equation (−m2 instead of +m2) without appeal to the Spe-

cial Theory of Relativity or any assumptions about the velocity of reference frames.

We can interpret the solutions to that equation (−m2) as faster-than-light particles

(tachyons). Among the first to consider the idea of particles which travel faster than

light was Sommerfeld who rejected the notion of the existence of these particles. In

1967 Gerald Feinberg (1967) studied the possibility of faster than light particles and

coined the term ”tachyon.” Since then many physicists have devoted time to theo-

rizing about tachyons and trying (without success) to detect them. The following

sections (5.4.1, 5.4.2, 5.4.3 and 5.4.4) present various views of tachyons and tachyon

creation by black holes, but they are not meant to be an exhaustive listing of such

possibilities.

5.4.1 Description of Tachyons

Bilaniuk and Sudarshan (1969) placed all particles into three classes. Class I

are slower than light particles called tardyons, bradyons or ordinary matter. Class II

are particles which travel at the speed of light (and, of course, only at the speed of

light) called luxons. Class III are the faster than light particles (tachyons).

A class I particle obeys the relation E2 − p2c2 = m2
0c

4, where E is the energy,

p is the momentum, m0 is the proper (”rest”) mass and c is the speed of light. For

simplicity and without loss of generality, let’s assume that this particle moves along

the x-axis, so p = px and py = pz = 0. Then

E − p2
xc

2 = m2
0c

4, (5.128)
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which describes a hyperbola in E and px coordinates (see figure 5.2). The positive

energy (upper curve) and the negative energy (lower curve) states are separated and

there is no transformation from the upper curve to the lower curve. In any case,

negative energy class I particles would not be observable. For momentum px = 0 the

energy will be E = m0c
2, called the proper energy.

For class II particles (luxons) the proper mass is zero and so

E2 − p2
x = (E + px)(E − px) = 0, (5.129)

which represents the two intersecting straight lines in figure 5.2.

Now for class III particles the Special Theory of Relativity (SR) requires that

E = mc2 (5.130)

and

m =
m0[

1− (v
c
)2
]1/2 , (5.131)

where m is the relativistic mass. There is no concern about imaginary values for

class I particles (all values are real), but for class III particles
[
1− (v

c
)2
]1/2

will be

imaginary since v
c
> 1. For this reason the proper mass is defined as imaginary, with

m0 = i m∗, (5.132)

where m0 = proper mass and m∗ is called the meta-mass. The relativistic mass in

equation (5.131) now becomes

m =
m0[

1− (v
c
)2
]1/2 =

im∗[
1− (v

c
)2
]1/2 =

m∗[
(v
c
)2 − 1

]1/2 , (5.133)

and m remains real. Figure 5.2 is a graph of energy, E, vs. momentum, px, for class

I, II, III particles.
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Figure 5.2 These graphs are relations between energy, E, and momentum, px; (blue
for bradyons, red for tachyons and green for luxons)

As pointed out above for class I particles, positive energy and negative energy

are separated and there is no transformation of one to the other. For tachyons,

however, positive and negative energies are not separated, as seen by the red hyperbola

in figure 5.2. As a further explanation, let S be a system in which we are at rest and

S ′ a system with velocity w with respect to system S. Then a tachyon traveling

with velocity v in the S frame will have a different velocity, call it u, with respect

to frame S ′. If the product vw becomes greater than c2 the point on the hyperbola

representing the state of the particle in S ′ will be in the negative energy realm and
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the particle will appear to have been absorbed first and emitted later. This can be

seen in figure 5.3.

Figure 5.3 Space-time Diagram

This figure shows graphs of two sets of axes in S and S ′. Point O is the emission

of a tachyon and point P is the absorption of the tachyon. It can be seen from the

figure that in the unprimed frame P occurs after O, but in the primed frame O oc-

curs after P , i.e. the tachyon is absorbed before it is emitted. This sequence reversal

will happen whenever point P is below the x′-axis, which is also when the energy is
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negative.

The two aspects of these events in S ′, i.e. negative energy and traveling back-

ward in time, are resolved by what is termed the reinterpretation principle. This

principle states that a particle with negative energy traveling backward in time is

equivalent to a positive energy particle traveling forward in time.

5.4.2 Tachyons produced by Schwarzschild Black Holes

In the 1970’s and early 1980’s a number of researchers considered the emission

of tachyons from black holes. In 1983 Srivastava (1983) noted that the metric inside

the event horizon (EH) of a Schwarzschild black hole is spacelike and assumed that

tachyons are in a superdense state inside the EH. The equation of state then is p = ρ,

where p is the pressure and ρ is the energy density of a tachyonic perfect fluid. As

proposed by Mignani and Recami (1976), for tachyons time is a vector quantity, but

position becomes essentially a scalar. The line element in this case derived from

Einstein’s equations is

ds2 =
(1 + τ)2

2r
dr2 − 2r

(1 + τ)2
(dτ 2

x + dτ 2
y + dτ 2

z )

=
(1 + ct)2

2r
dr2 − 2rc2

(1 + ct)2
(dt2x + dt2y + dt2z), (5.134)

where τi = cti, τ 2 = τ 2
x + τ 2

y + τ 2
z and t2 = t2x + t2y + t2z.

For free spin-0 tachyons the equation to be satisfied would be the Klein-Gordon

equation which is{
(−g)−1/2 ∂

∂xµ

[
(−g)1/2gµν

∂

∂xν

]
+m2

}
ψ(r, tx, ty, tz) = 0, (5.135)

where gµν is the metric given by equation (5.134), xµ = (r, tx, ty, tz) and g = − 4r2c6

(1+ct)4
.

Plane wave solutions to (5.135) will be of the form ψ = f(r)
r
e−kt, where kt = k1tx +
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k2ty + k3tz and k = (k1, k2, k3) are constants. This will yield an ordinary differential

equation

d2f

dr2
+

[
(1 + ct)4k2

4c2r2
+
m2(1 + ct)2

2r

]
f = 0 (5.136)

for a given t. The solution is found using WKB approximation and the transmission

and reflection coefficients are calculated. It turns out that they are equal and that

half of the tachyons incident on the EH are transmitted across the EH and therefore

tachyons are produced by the black hole. Srivastavas’ calculations also show that as

the tachyon recedes from the black hole its momentum and energy decrease and that

there is a certain distance and time at which the energy of the tachyon will vanish.

5.4.3 Quantization of Black Holes

He and Ma (2011) develop a notion of black hole quantization by considering

that black holes are characterized by only three properties: M, the mass of the black

hole, Q, the electric charge of the black hole and J, the angular momentum of the black

hole. Schwarzschild black holes have no electric charge and no angular momentum. So

for such a black hole (BH) other quantities such as the radius, R = 2GM
c2

, the surface

area, A = 4πR2 and the Compton wavelength, λ = h̄
Mc

calculated from the properties

of BH’s can only depend on M and are therefore essentially the same quantity. The

equality

Rλ = 2l2, (5.137)

where l =
√

Gh̄
c3

is the Planck length, h̄ is the reduced Planck constant, c is the speed

of light and G is the universal gravitational constant, is true for any mass, M.

Since nothing inside the Schwarzschild radius, R, can be known to an outside observer,

all the information of the BH should be considered as residing on the surface, the event

horizon or holographic screen from the holographic principle as described by Susskind
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(1994). BH’s create and emit particles with a thermal spectrum and temperature

T = h̄
8πMck

, where k is the Boltzmann constant.

Using Bohr’s theory of quantization of the hydrogen atom one can make a

similar argument that the BH behaves like a wave with Compton wavelength λ = h̄
Mc

and that its wave be a standing wave on a spherical surface so that

R = 2nλ. (5.138)

Using equation (5.137) with equation (5.138) we get

Rn = 2
√
n l, (5.139)

and we see that the radius is quantized. Other quantities are now seen to be quantized:

En = Mnc
2 =

Rnc
4

2G
=
√
nMP c

2 (5.140)

An = 4πR2
n (5.141)

λn =
h̄

Mnc
=

l√
n

(5.142)

Tn =
MP c

2

8π
√
nk
, (5.143)

where MP =
√

h̄c
G

is the Planck mass.

The smallest stable BH would be for n = 1 and then R1 = 2l. In other words

the radius would be twice the Planck length, the energy, E1, is just the Planck mass

energy, MP c
2, and the Compton wavelength is equal to the Planck length, λ = l. So

the smallest BH is of the Planck scale, but n can be very large and thus BH’s can

be enormously large. As n gets larger the energy difference between successive states

becomes smaller, i.e.

∆E = En+1 − En = (
√
n+ 1−

√
n)MP c

2 =
MP c

2

√
n+ 1 +

√
n
. (5.144)

This quantization of energy states for BH’s would seem to suggest that BH’s can emit

as well as absorb particles.
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5.4.4 Creation and Annihilation of Tachyons by Black Holes

Using the results of He and Ma (2011), Sahoo and Kumar (2012) claim that

the quantization of energy states of BH’s can be related to the relativistic mass of the

combined masses of ordinary matter and tachyons. The relativistic mass for ordinary

matter is

m1 =
m01√

1− (v
c
)2
, (5.145)

and for tachyons it is

m2 =
m02√

(v
c
)2 − 1

, (5.146)

where m01, im02 are the respective rest masses and v is the particle velocity.

The total combined mass of the ordinary matter particle and the tachyon is

M = m1 +m2 =
m01√

1− (v
c
)2

+
m02√

(v
c
)2 − 1

. (5.147)

Two different cases for the combined mass are defined.

Case I: v < c

MP =
m01√

1− (v
c
)2

+
m02

i
√

(1− v
c
)2

=
M0√

1− (v
c
)2
e−iφ, (5.148)

where φ = tan−1(m02

m01
) and M0 =

√
m2

01 +m2
02.

Case II: v > c

MT =
m01

i
√

1− (v
c
)2

+
m02√

(1− v
c
)2

=
−iM0√
(v
c
)2 − 1

eiφ. (5.149)

MP ,MT are complex masses, whereas m01,m02 are real masses.

Sahoo and Kumar (2012) show that BH’s are quantized in discrete energy states

(He and Ma, 2011) and that the combined masses can be correlated with different

67



energy states. These different energy states determine the creation and annihilation

of ordinary matter and tachyons. For ordinary matter the energy state of the BH

would be

EP = MP c
2 =

M0c
2√

1− (v
c
)2
e−iφ, (5.150)

whereas for tachyons it would be

ET = MT c
2 =

−iM0c
2√

(v
c
)2 − 1

eiφ. (5.151)

So if a BH is in state EP then particles with v < c are created and annihilated. In

state ET , particles with v > c are created and annihilated.

Black holes of mass M behave like waves of Compton wavelength λ = h̄
Mc

[16].

Further, Hawking showed that BH’s create and emit particles as though the BH had

a temperature T ∼= 1
8πM

[14]. The putative mechanism of this creation is that just

outside the event horizon two particles are created, one with positive energy which

escapes to infinity and the other with negative energy which enters the black hole.

Let’s consider three special cases: φ = 0, π
4
, π

2
.

Case I: φ = 0

EP =
M0c

2√
1− (v

c
)2

(5.152)

ET =
−iM0c

2√
(v
c
)2 − 1

. (5.153)
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In this case ordinary particle are created and tachyons are annihilated.

Case II: φ = π
4

EP =
M0c

2√
1− (v

c
)2
e
−iπ
4 =

M0c
2√

1− (v
c
)2

[
1√
2
− i√

2

]
(5.154)

ET =
−iM0c

2√
(v
c
)2 − 1

e
−iπ
4 =

M0c
2√

(v
c
)2 − 1

[
1√
2
− i√

2

]
. (5.155)

The same number of ordinary matter particles are created as annihilated. Equally

for tachyons, the same number are created as annihilated.

Case III: φ = π
2

EP =
M0c

2√
1− (v

c
)2
e
−iπ
2 =

−iM0c
2√

1− (v
c
)2

(5.156)

ET =
−iM0c

2√
(v
c
)2 − 1

e
−iπ
2 =

M0c
2√

(v
c
)2 − 1

. (5.157)

In this case ordinary matter particles are annihilated, but tachyons are created.

The conclusion is that ordinary matter and tachyons can be created and an-

nihilated by a BH depending on its (quantized) energy state (Sahoo and Kumar,

2012).
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5.5 New Superluminal Special Relativity Transformations

Hill and Cox (2012) have proposed transformations (in fact, two new transfor-

mations) applied to inertial reference frames with relative velocities greater than the

speed of light (c < v < ∞) which are, as they say, ”complementary” to the Lorentz

transformations of Special Relativity for subluminal velocities (0 ≤ v < c). Further,

with these transformations there is no need for contrived concepts such as imaginary

mass nor for complicated physics. This extension of Special Relativity allows for

faster than light motion.

We consider a rest frame with coordinates X, Y, Z, T and another frame with

coordinates x, y, z, t moving with velocity v relative to the rest frame. We also use

the standard convention of assuming that axis X and axis x are aligned with each

other, that Y = y, Z = z, and that v is along the direction of the X − x axis. Then

the only coordinates of concern are x, t and X,T .

5.5.1 Subluminal Special Relativity

In Special Relativity the Lorentz transformations relating the rest frame, X, to

the moving frame, x, are

X =
x+ vt√

1− (v/c)2
, T =

t+ vx/c2√
1− (v/c)2

(5.158)

and the inverse transformations are

x =
X − vT√
1− (v/c)2

, t =
T − vX/c2√

1− (v/c)2
. (5.159)

Of course, when v = 0, then

x = X, t = T, v = 0 (5.160)

or

x+ ct = X + cT, x− ct = X − cT, v = 0. (5.161)
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With U =
dX

dT
and u =

dx

dt
we have the well-known equation for addition of velocities

u =
U − v

1− Uv/c2
. (5.162)

Besides equations (5.160) for 0 ≤ v < c there is also the possibility of x = −X, t = −T

that would be consistent with u = U and yielding the Lorentz transformations with

X and T replaced with −X and −T . However, such a replacement would mean a

reversal of space and time which would be contrary to Galilean transformations for

v � c. In the case for c < v <∞ there is no such restriction on the sign changes and

the Special Relativity formulation must depend on the mathematical structure.

5.5.2 Superluminal Special Relativity

Assuming that in the regime c < v < ∞ equation (5.162) still holds, then for

v → ∞ the relation uU = c2 is true. This implies two possible constraints for the

new transformations:

x = −cT, t = −X
c
, v =∞ (5.163)

or

x = cT, t =
X

c
, v =∞. (5.164)

The first constraint (equation (5.163)) will give the first possible new transformation

x =
X − vT√
(v/c)2 − 1

, t =
T − vX/c2√

(v/c)2 − 1
. (5.165)

The second constraint (equation (5.164)) gives the second possible new transformation

x =
−X + vT√
(v/c)2 − 1)

, t =
−T + vX/c2√

(v/c)2 − 1
. (5.166)
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Hill and Cox (2012) show that the first transformation, equation (5.165), leads to

energy-momentum relations which are invariant under this new transformation, i.e.

Case I: m =
p∞/c√

(v/c)2 − 1
, E = mc2 (5.167)

In this case, p∞ is the limiting value of p = mv as v →∞. In other words, at v =∞

the mass m will be zero, while the momentum p will have a finite, non-zero value.

If we do not insist on energy-momentum invariance under transformation, then the

second possible transformation, equation (5.169), will lead to the relations

Case II: m =
m∞v/c√
(v/c)2 − 1

, E =
1

2
m(c2 + v2)− 1

2
m∞ c2 cosh−1

(v
c

)
+ E0 (5.168)

where m∞ is the finite mass in the limit as v approaches infinity and E0 is an arbitrary

constant.

In this dissertation we are considering only systems in which the Poincaré group

applies which means that of the two cases mentioned above only the first case, for

which the energy-momentum relations are invariant, is physically meaningful. Thus,

in what follows, only the first case will be considered in detail.

5.6 Tachyonic Hawking Radiation

Particles of Hawking radiation are due to the quantum changes in the vacuum

produced by the collapsing black hole. In what follows we will let G = c = 1

(geometrized units), so that GM/c2 will simply be equal to M , or to put it differently,
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M in the following equations would be GM/c2 in SI units. The geodesic equation

using the Schwarzschild metric is(
1− 2M

r

)(
dt

dλ

)2

−
(

1− 2M

r

)−1(
dr

dλ

)2

− r2

(
dθ

dλ

)2

− r2 sin2 θ

(
dφ

dλ

)2

= ±1,

(5.169)

where +1 corresponds to ordinary matter and −1 corresponds to superluminal (tachy-

onic) matter. (For massless particles the RHS would be zero.) For both ordinary

matter and tachyons we can use the proper time τ in place of the affine parameter

λ that was used for massless particles on null geodesics. As pointed out in equation

(5.110), there are two constants of motion, meaning that the Schwarzschild metric

does not depend on two coordinates (t and φ). The motion of the created particle is

in a plane (and is in fact radial), so we may orient the system so that θ = π/2 and

therefore sin θ = 1 and dθ/dτ = 0. The constants of the motion, then, are(
1− 2M

r

)(
dt

dτ

)
= E (5.170)

r2

(
dφ

dτ

)
= L, (5.171)

where E and L are, respectively, the energy per unit mass and the angular momentum

per unit mass. The geodesic equation can now be written(
1− 2M

r

)−1

E2 −
(

1− 2M

r

)−1(
dr

dτ

)2

− L2

r2
= ±1 (5.172)

or with a little algebra

E2 −
(
dr

dτ

)2

−
(

1− 2M

r

)(
L2

r2
± 1

)
= 0. (5.173)

After carrying out the implicit multiplications and solving for E2

E2 =

(
dr

dτ

)2

+

(
±1∓ 2M

r
+
L2

r2
− 2ML2

r3

)
. (5.174)
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In our case there is no angular momentum, so L = 0 which leaves

E2 =

(
dr

dτ

)2

+

(
±1∓ M

r

)
=

(
dr

dτ

)2

±
(

1− 2M

r

)
, (5.175)

again, the + for ordinary matter and the − for tachyons. The Schwarzschild radius,

rs, is defined as rs = 2M and we rewrite equation (5.175) as

E2 =

(
dr

dτ

)2

±
(

1− rs
r

)
. (5.176)

We can consider the views of two different observers: one located near the event

horizon, the other at a great distance from the black hole. Both observers have the

same metric and we write E2 as

E2 = v2 ±
(

1− rs
r

)
, (5.177)

where E is dimensionless, (+) corresponds to ordinary matter (v < 1), (−) corre-

sponds to tachyonic matter (v > 1) and v is in units of c. Moreover, if e = energy

= mc2 = m since we are using geometrized units with G = c = 1, then E must equal

1 since E = e/m (energy per unit mass). So solving for v with E = 1 we have

v =

√
1∓

(
1− rs

r

)
, (5.178)

which shows that in the limit as r → rs (the Schwarzschild radius) equation (5.178)

yields

v = 1 (in units of c) (5.179)

for ordinary particles as well as for tachyons.

To continue we revert back to SI units (G 6= 1, c 6= 1). If we assume that a local

observer views the particles created at r = rs + ε, where ε is very small compared to

rs, then equation (5.177) becomes

E2 =
(v
c

)2

±
(

1− rs
rs + ε

)
=
(v
c

)2

±
(

ε

rs + ε

)
= 1, (5.180)
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or
(v
c

)2

= 1∓ ε

rs + ε
, (5.181)

where now (−) is for ordinary matter and (+) is for tachyons. Finally, solving for v

yields

v =

√
1∓ ε

rs + ε
c. (5.182)

We see, then, that for ordinary matter v < c and for tachyons v > c as would be

expected and that the value of v depends on ε, the distance from the event horizon.

A distant observer cannot see the particle creation process since the time for this

information to reach this observer approaches infinity. However, the distant observer

sees a continuous flux of particles and is able to measure the speeds of the arriving

particles. According to Hobson, Efstathiou, Lasenby (2006) the distant observer

measures a characteristic energy of the particles generated by a black hole as

E = kbT = kb
h̄ c3

8π kb G M
=

h̄ c3

8π G M
. (5.183)

From Hill and Cox ( 2012) E = mc2, so h̄ c3

8π GM
= mc2 or, solving for m

m =
h̄ c

8π GM
=

(
h̄

4π c

) (
c2

2GM

)
=

h̄

4π c rs
. (5.184)

This seems to say that the mass of the particles created by a black hole depends only

on the inverse Schwarzschild radius and, hence inversely on the mass of the black

hole
(
rs = 2GM

c2

)
. Thus, the smaller the black hole (smaller M), the more massive the

particles created.

Using the relativistic mass of particles of ordinary matter

(
m = m0√

1−(v/c)2

)
and setting it equal to m in equation (5.184) allows us to calculate the velocities of

particles of mass m. Then

m0√
1− (v/c)2

=
h̄

4π c rs
(5.185)

75



or

4π rs
λc

=
√

1− (v/c)2, (5.186)

where λc = h̄/m0c is the reduced Compton wavelength of the particle. Solving

equation (5.186) for v gives

v =
√

1− (4πrs/λc)2 c, (5.187)

which shows that for ordinary matter v is less than c provided that

(4πrs/λc) < 1. (5.188)

Therefore, black holes of mass M can produce particles of ordinary matter of mass

m0 only if equation (5.188) is satisfied. The flux of these particles will have a thermal

spectrum as shown in equation (5.125).

In the case of tachyons m = p∞/c√
(v/c)2−1

using Hill and Cox (2012) case I. Setting

this equal to m in equation (5.184) we have

p∞/c√
(v/c)2 − 1

=
h̄

4π c rs
, (5.189)

so that

4πrs/λ∞ =
√

(v/c)2 − 1, (5.190)

where λ∞ = h̄/p∞ and where, again, p∞ is the value of the momentum in the limit

as the relative velocity, v, approaches infinity. Solving equation (5.190) for v results

in

v =
√

1 + (4πrs/λ∞)2 c. (5.191)

As expected v is greater than c for tachyons. From equation (5.191) it is clear that the

more massive the black hole (large M ⇒ large rs), the greater the tachyon velocity.

Finally, as explained preceding equation (5.183), this equation is the character-

istic energy of particles created by a Schwarzschild black hole and its form is that of

a thermal spectrum for the radiation flux as viewed by a distant observer.
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5.7 Summary of Hawking Radiation for Higher-Derivative Klein-Gordon

Equation

Hawking radiation for the ordinary Klein-Gordon equation is already well-

known for both massless fields and massive fields and the results are pointed out

in section 5.1 (massless fields) and section 5.3 (massive fields). The only difference

between the results is that the ω for massive fields will include the rest mass as

pointed out by Hawking (1975). For the higher-derivative Klein-Gordon equation the

results in the case of the massless fields is simply twice the result of the ordinary

Klein-Gordon equation for massless fields. In the case of massive fields, however,

the higher-derivative Klein-Gordon equation factors into one part which is just the

ordinary Klein-Gordon equation for massive fields and a second part which is the

Klein-Gordon equation for tachyonic fields. It is this second part whose solutions offer

new and interesting results. In particular, the solutions show that very near the event

horizon the tachyonic velocity must be very close to c, the speed of light. For distances

much greater than the event horizon, the velocity will be v =
√

1 + (4πrs/λ∞)2 c,

using Hill and Cox (2012). Since rs = 2GM/c2 and increases linearly as M increases,

the tachyonic velocity will be large for large M .
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CHAPTER 6

Nonlocality

6.1 Einstein/Podolsky/Rosen Paper

Before the formulation of quantum mechanics all physics was considered to be

local, i.e. measuring a physical property of one of two different entities which had

interacted with each other and then traveled away from each other would have no

effect on the second entity. Furthermore, it was understood that one could mea-

sure any and all of the properties of a physical entity to as precise a degree as the

instrumentation permitted. But outcomes of thought experiments and actual exper-

iments suggested results that many physicists, including Einstein, found difficult to

accept. This led to different interpretations of the results of experiments predicted by

quantum mechanics and led to many debates among their respective adherents, most

notably between Niels Bohr and Albert Einstein. The three principle interpretations

were the Copenhagen interpretation (Bohr), the realist interpretation (Einstein) and,

somewhat later, the agnostic interpretation.

In 1935 Einstein co-authored a paper with Boris Podolsky and Nathan Rosen

(Einstein et al., 1935) in which they claimed by means of a thought experiment that

quantum mechanics, although correct, was incomplete. Their argument was that for

a theory to be complete ”every element of the physical reality must have a coun-

terpart in the physical theory” and that the ”physical reality” of the system under

consideration are those physical quantities which can be measured by experiments.

They argued that according to quantum mechanics two operators, say A and B,

which do not commute, i.e. AB 6= BA, then simultaneous knowledge of both of them
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is not possible which led to their conclusion ”that either (1) the quantum descrip-

tion of reality given by the wave equation is not complete or (2) when the operators

corresponding to two physical quantities do not commute the two quantities cannot

have simultaneous reality.” This result led Einstein to propose the ”hidden variable”

concept. According to this concept the quantum mechanical wave function needed

further elaboration to predict the simultaneous existence of the properties of inter-

est of the system under consideration. Einstein believed that all the properties of a

system simultaneously existed but that the quantum mechanical theory was not yet

comprehensive enough.

6.2 Bell’s Inequalities

John Stewart Bell whose remunerative work was in particle physics and quan-

tum field theory was also interested in the foundations of quantum theory and his best

known and most influential paper was one addressing the Einstein/Podolsky/Rosen

(EPR) paradox. In that paper (Bell, 1964), which was written in 1964, Bell shows

that, although under very specific conditions of the Einstein proposal of hidden vari-

ables the predictions obtained from quantum mechanics can be reproduced, in general

the hidden variables model will differ from the predictions of quantum mechanics. Bell

does not use the precise thought experiment of EPR but rather a slight revision of

it by David Bohm and Yakir Aharonov (Bohm and Aharonov, 1957). In their re-

vision two particles are produced in an entangled state (spin singlet state) in which

they move apart in opposite directions. The particles are detected by Stern-Gerlach

magnets which are orientable in different directions. Each detector’s measurement is

either +1 or −1 depending on the spin of the particle measured. The orientation of

the detectors is represented by a unit vector a for one apparatus and unit vector b
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for the other. The correlation between the instruments according to the prediction

of quantum mechanics will be

P (a,b) = −a · b. (6.1)

so if a = b, then P (a, a) = −1. If a and b are orthogonal to each other a ·b = 0 and

the measurements are uncorrelated. Bell gives an example showing that these special

cases can be explained using hidden variables. However, he goes on to show that

allowing for all possible orientations of the detectors hidden variables cannot explain

the outcomes.

Bell proposed a hidden variable, λ, to account for the correlations between the

two detectors. This hidden variable, λ, could be a simple variable, a set of variables

or even a set of functions and could be continuous or discrete. Using λ the correlation

between the two detectors would be in terms of an integral

P (a,b) =

∫
dλρ(λ)A(a, λ), B(b, λ), (6.2)

where ρ(λ) is the probability density function, A(a, λ) and B(b, λ) are the measure-

ment results of the respective detector, A or B, and

A(a, λ) = ±1, B(b, λ) = ±1. (6.3)

The two detectors, A and B, are physically separated from one another so the

outcome on detector A does not depend on the setting b and likewise B does not

depend on setting a. Suppose the experimenter can set detector B to another setting

different from b, call it c, a unit vector. Bell proves that P (a,b) and P (a, c) must

satisfy the relation

|P (a,b)− P (a, c)| ≤ 1 + P (b, c). (6.4)

As Griffiths (Griffiths, 2005) points out there are many settings for a, b, and c

for which a quantum mechanical result violates this inequality. One such case would
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be for a and b to be orthogonal and c to be in the plane of a and b but at a 45◦

angle to both of them. Then we would have

P (a,b) = 0, P (a, c) = P (b, c) = −
√

2

2
, (6.5)

and from equation (6.4) this result would lead to an invalid inequality

√
2

2
≤ 1−

√
2

2
. (6.6)

But clearly √
2

2
6≤ 1−

√
2

2
, (6.7)

showing that no local hidden variable model can be consistent with the results of

quantum mechanics for all possible settings of a, b, and c.

From this theoretical demonstration it appeared that Einstein was mistaken in

his belief of local hidden variables. However, it would take many years and many

experiments to substantiate Bell’s inequality.

The problem with verifying Bell’s inequality with experiment is that there were

a number of loopholes to address which required ever more clever and sophisticated

experiments. From 1970 onward there have been many notable experiments that have

gradually closed these loopholes. The loopholes number six:

1) The detection loophole - Many photons are produced but few are detected leading

to the possibility that those detected are unrepresentative even though they violate

Bell’s inequality. Other systems not using photons, e.g. trapped ions, have been

more efficient. More recently, optical systems have been developed which have high

efficiencies, such as superconducting photodetectors.

2) The locality loophole - There is one measurement for the property of interest
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for each of the two particles being tested. To prevent the possibility of a signal being

sent from the detector of the first particle tested to the second detector the two events

(measurements) must have space-like separation. In 1982 Alain Aspect conducted an

experiment which respected this condition and also allowed for the settings of each

detector to be set during the flight of the particles. Gregor Weihs in 1998 improved

on Aspect’s experiment by devising a way for the settings to be determined randomly.

3) The coincidence loophole - The particle pairs produced by the source are nu-

merous and some means is necessary to assure that the measurements made by the

two detectors correspond to particles of the same pair.

4) The memory loophole - This loophole posits that, given that measurements are

made with the same two detectors numerous times, somehow the hidden variables

could use that information to increase the violation of Bell’s inequality.

5) Superdeterminism - Superdeterminism asserts that free will does not exist and

that the measurement settings are pre-determined by the system. This loophole

would be impossible to falsify.

6) The many-worlds loophole - Bell’s theorem assumes one single outcome to an

experiment and so the many-worlds conception would not be consistent with that.
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6.3 The Nobel Prize in Physics 2022

6.3.1 John Clauser

In 1972 John Clauser and Stuart Freedman used experimental equipment that

had been built by a physicist Carl Kocher. However, they had to modify the equip-

ment due to the inefficiencies of the polarizers but eventually they were able to estab-

lish a violation of the Bell-CHSH (Clauser-Horne-Shimony-Holt) inequality. Freed-

man died in 2012 and was therefore not named in the Nobel award, but the Freedman-

Clauser experiment helped eliminate the coincidence loophole.

6.3.2 Alain Aspect

In 1981 and 1982 Aspect developed technics and specialized equipment to cir-

cumvent the locality loophole. He and his collaborators also used polarizers that

changed settings during the flight of the particles. This experiment violated the Bell

inequality and was many times more precise than the Freedman-Clauser experiment.

But it was his third experiment performed in 1982 which was the most notable. As-

pect used acousto-optical switches which could channel the photons into two different

paths in a time of approximately 10 nanoseconds, which was shorter than the approx-

imately 20 nanoseconds travel time of the photons. The results of these experiments

violated Bell’s inequality but were in agreement with quantum mechanics predictions.

6.3.3 Anton Zeilinger

Many years after Aspect’s studies, in 1998 Zeilinger and his group refined As-

pect’s experiments and was able to use random numbers, and in one case signals from

distant galaxies, to control the settings of the detectors. As a result of his work he

demonstrated quantum teleportation and developed tools for use in quantum infor-

mation and quantum computing.
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6.4 Nonrelativistic Limit of the Fourth Order Higher-Derivative Klein-

Gordon Equation

The following uses natural units for which c = h̄ = 1 and m = rest mass.

The higher-derivative Klein-Gordon equation is

[(∂µ∂µ)2 −m4] φ(r, t) = 0. (6.8)

Assume the form of φ(r, t) is

φ(r, t) = φ̃(r, t) e−imt, (6.9)

and hence

[(∂µ∂µ)2 −m4] φ̃(r, t) e−imt = 0. (6.10)

Greiner (1990) shows that, if E = E ′ + m2, where E is total energy and E ′ is the

nonrelativistic kinetic energy, then E ′ � m and

|i∂tφ̃| ≈ E ′φ̃� mφ̃. (6.11)

As an aid to what follows we note that from equation (6.11)

|∂2
t φ̃| � |2m ∂tφ̃|, |∂3

t φ̃| � |2m ∂2
t φ̃|, |∂4

t φ̃| � |2m ∂3
t φ̃|, (6.12)

where we are simply repeatedly applying the differential operator to each side of the

inequalities. But this implies that

|∂2
t φ̃| � |2m ∂tφ̃|, |∂3

t φ̃| � |2m ∂tφ̃|, |∂4
t φ̃| � |2m ∂tφ̃|. (6.13)

Proceeding, we calculate the 2nd time derivative of φ

∂2
t φ = ∂t

[
(∂tφ̃− imφ̃) e−imt

]
= (∂2

t φ̃− im∂tφ̃− im∂tφ̃−m2φ̃) e−imt

= (∂2
t φ̃− 2im∂tφ̃−m2φ̃) e−imt

≈ (−2im∂tφ̃−m2φ̃) e−imt. (6.14)
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Now calculating the 3rd time derivative of φ we have

∂3
t φ = ∂t

[
(∂2
t φ̃− 2im∂tφ̃−m2φ̃) e−imt

]
= (∂3

t φ̃− im∂2
t φ̃− 2im∂2

t φ̃− 2m2∂tφ̃−m2∂tφ̃+ im3φ̃) e−imt

= (∂3
t φ̃− 3im∂2

t φ̃− 3m2∂tφ̃+ im3φ̃) e−imt

≈
(
−3m2∂tφ̃+ im3φ̃

)
eimt. (6.15)

And finally we arrive at the 4th time derivative of φ

∂4
t φ = ∂t

[
(∂3
t φ̃− 3im∂2

t φ̃− 3m2∂tφ̃+ im3φ̃) e−imt
]

= (∂4
t φ̃− im∂3

t φ̃− 3im∂3
t φ̃− 3m2∂2

t φ̃− 3m2∂2
t φ̃+ 3im3∂φ̃+ im3∂φ̃+m4φ̃) e−imt

= (∂4
t φ̃− 4im∂3

t φ̃− 6m2∂2
t φ̃+ 4im3∂tφ̃+m4φ̃) e−imt

≈ (4im3∂tφ̃+m4φ̃) e−imt. (6.16)

Using equations (6.14), (6.15) and (6.16) we obtain the nonrelativistic limit of

the H-D K-G equation

[(∂µ∂µ)2 −m4] φ̃ e−imt = [(∂2
t −∇2)2 −m4] φ̃ eimt

= (∂4
t − 2∂2

t∇2 +∇4 −m4) φ̃ eimt

≈ [(4im3∂t +m4)− 2(−2im∂t −m2)∇2 +∇4 −m4] φ̃ eimt

= [(4im3∂t − 2(−2im∂t −m2)∇2 +∇4] φ̃ eimt = 0. (6.17)

Dividing by 4m3eimt and collecting terms we have

[(i∂t + (i/m2 ∂t + 1/2m)∇2 + 1/4m3 ∇4] φ̃

= [(i∂t + 1/2m ∇2 + i/m2 ∂t ∇2 + 1/4m3 ∇4] φ̃ = 0, (6.18)

or rewriting

[(
i∂t + 1/2m ∇2

)
+
(
i ∂t + 1/4m ∇2

) (
1/m2 ∇2

)]
φ̃ = 0. (6.19)
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As an example, we use the mass of an electron, m = 0.511 MeV = 0.511 × 106 eV.

Then
1

m2
= 3.830× 10−12 and we have the relations

∣∣∣∣ im2
∇2∂tφ̃

∣∣∣∣� ∣∣∣i∂tφ̃∣∣∣ and

∣∣∣∣ 1

4m3
(∇2)2φ̃

∣∣∣∣� ∣∣∣∣ 1

2m
∇2φ̃

∣∣∣∣.
Therefore, the second term in equation (6.19) is negligible compared to the

first term, and the first term is just the Schrödinger equation.

6.5 A Possible Explanation For Nonlocality

As described in chapter 3 all odd power higher-derivative Klein-Gordon equa-

tions can be derived from, and is included in, even power equations since any odd

power equation will appear by factoring an even power equation when m = 2n, where

m is even and n is odd. The even power higher-derivative Klein-Gordon equation

will be the product of three factors. One factor which is the Klein-Gordon equation

and a second factor which we can refer to as the negative Klein-Gordon equation.

Both these factors have real solutions for omega (ω2 = k2±ω2
0). The third factor has

complex solutions for omega which are ignored on physical relevance grounds.

Also noted at the end of chapter 3 was that the wave function solutions to the

higher-derivative Klein-Gordon (H-D K-G) equations could be interpreted as fields

possessing a time-like dynamic and a space-like dynamic. All H-D K-G equations are

Poincaré invariant (Musielak and Fry, 2009) and so their solutions must be Poincaré

invariant and consistent with the four momentum relationship. The time-like dynamic

(ω1± solutions) is viewed as particles of ordinary matter with a wave function satisfy-

ing the higher-derivative Klein-Gordon equation and is responsible for the evolution

of the Hamiltonian, in agreement with one of the axioms of quantum mechanics,
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i.e. that the time evolution of the wave function is governed by the Hamiltonian.

These particles, again, satisfying the higher-derivative Klein-Gordon equation, also

have solution that has a space-like dynamic (ω2± solutions) which is governed by the

distinctly quantum mechanical nature of matter, that is, the noncommutativity of

observables. This space-like contact between all parts of the field would communicate

the nonclassical state information not related to the Hamiltonian.

A field evolving with a space-like dynamic could explain the EPR thought ex-

periment and Bell’s inequality as well as communication between entangled particles

separated by some distance. This communication between particles is not meant

to imply faster than light particle particles or tachyons which are dismissed in this

interpretation, but that the space-like aspect is responsible for the apparent commu-

nication between the particles. As a result it permits ordinary entangled particles to

”communicate” with one another. However, the space-like part of the wave function

would not be observable and would have no effect on the probability density which is

determined solely by the time-like component of the wave function.

The fourth order K-G equation contains the original second order K-G equation

and, as such, it describes spin-0 particles. Since the wave function field is based on

the fourth order K-G equation it has a relativistic origin. As explained, the time-like

and space-like dynamics are equally represented in the field. However, the space-like

property does not persist in the nonrelativistic limit and the standard Schrödinger

equation is recovered. The solutions to the H-D K-G equation provide an additional

aspect of the wave function, a space-like dynamic, and this additional feature could

be a possible explanation to the phenomenon of nonlocality.
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CHAPTER 7

Summary

The early 20th century saw the development of quantum mechanics followed

by the development of quantum field theory. In quantum field theory particle spin

was of profound importance for formulating the fundamental equations describing

particle dynamics; for spin-0 particles this was the Klein-Gordon equation. The higher

derivative Klein-Gordon equations were constructed using irreducible representations

of the Poincaré group. These equations were used to develop a higher derivative

quantum field theory for spin-0 particles and tachyonic fields. It was noted that the

increasingly higher orders of the Klein-Gordon equation with a mass term could be

separated into two series of orders, an odd order series and an even order series.

The odd order series can be factored into two factors, one of which is the original

Klein-Gordon equation and another factor for which the energy (ω) has complex

solutions and is therefore physically irrelevant. The even order series, when factored,

yields three factors : a factor which is the original Klein-Gordon equation, a second

factor which is the ”negative” Klein-Gordon equation ( a minus sign rather than a

plus sign preceding the mass term), and a third factor for which the energy (ω) has

complex solutions and is therefore deemed physically irrelevant. It is the solutions to

the ”negative” Klein-Gordon equation which seems to imply tachyonic, or space-like,

fields.

Black holes are classified according to their mass, net electrical charge and

angular momentum. A Schwarzschild black hole can have different masses but has

no net electrical charge nor angular momentum. The black hole mass is inversely
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proportional to the energy available at the event horizon to produce the flux of emitted

radiation. In other words, the smaller the black hole mass, the greater the energy

available at the event horizon. As an example of what particles might be created and

their likelihood of creation we note that for an intermediate mass black hole on the

order of a solar mass, the event horizon temperature is ∼ 10−8 K. If we consider a

solar mass black hole, then using the Stefan-Boltzmann law of blackbody radiation,

the event horizon surface temperature in ordinary units is

T =
h̄ c3

8 π G kB M�
∼= 6× 10−8 K,

where h̄ is the reduced Planck constant, c is the speed of light, G is the gravitational

constant, kB is Boltzmann’s constant and M� is the solar mass (∼ 2×1030 kg.). This

represents an energy of

kBT ∼= 8× 10−31Joules,

whereas for the Higgs particle (the only known spin-0 particle) the mass energy is

∼ 125 GeV ∼= 2 × 10−8 Joules, exceeding the energy at the event horizon of a solar

mass black hole by roughly 23 orders of magnitude. Thus, the creation of a Higgs

particle near the event horizon of a solar mass black hole is essentially zero. However,

if the black hole is very small, say on the order of 108 kg, then the event horizon

temperature is orders of magnitude higher so that the energy at the event horizon is

comparable to the Higgs mass energy and there is the likelihood of the creation of

Higgs particles.

Application of the ”negative” equation to a Schwarzschild black hole adds tachy-

onic particles or fields to the usual Hawking radiation as energy radiated from the

black hole by quantum mechanical effects. A distant observer cannot see the creation

of the particles but does see a continuous flux of particles and is able to measure their
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speeds. The distant observer measures a characteristic energy of any of the particles

generated by a black hole as

E =
h̄ c3

8π G M

Setting this equation equal to the equation for energy of particle in the superluminal

regime

E =
p∞c√

(v/c)2 − 1
,

where p∞ is the (finite) value of the momentum as the relative velocity, v, approaches

infinity, yields

E =
p∞c√

(v/c)2 − 1
=

h̄ c3

8π G M

and

v =

[
1 +

(
8πGMp∞

h̄c2

)2
]
c.

It is seen that the tachyon velocity is greater than c and that the more massive the

black hole, the greater the tachyon velocity, as opposed to the relation between black

hole mass and particle velocity of ordinary matter. All this for a distant observer.

The wave function solutions to the higher-derivative Klein-Gordon equations

allow the identification of those solutions as fields possessing a time-like dynamic and a

space-like dynamic which are represented equally in the field. The time-like evolution

of the wave function is governed by the Hamiltonian and operates in the subluminal

domain so there is no violation of causality. The space-like dynamic is a strictly

quantum mechanical nature of matter, i.e. the noncommutitivity of observables. A

possible explanation for the phenomenon of nonlocality is the space-like property of

the wave function, although it would not be observable and would have no effect on

the probability density.

Finally, the higher derivative Klein-Gordon equations are relativistic equations,

but the nonrelativistic limit recovers the Schrödinger equation.
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CHAPTER 8

Addendum - Convergence of Integrals

We need to show the convergence of integrals for equations (5.87) and (5.88).

Consider the integrals in the lower-half complex plane for α2ωω′ (equation (5.87)) on

the infinite quarter circle in the 4th quadrant and for β2ωω′ (equation (5.88)) in the

3rd quadrant. The integral for α2ωω′ is

α2ωω′ = −C
∫ 0

∞
ds

(
ω′

ω

) 1
2

r2 e−iω
′s eiω

′v0 eiω4M ln( s
K

).

This integral is equal to −C
∫ 0

∞
ds (

ω′

ω
)
1
2 r2 e−iω

′s eiω
′v0 eiω4M(ln s−lnK).

But (ω
′

ω
)
1
2 , eiω

′v0 and e−iω4M lnK are all constants so the integral can be written

α2ωω′ = C ′
∫ ∞

0

ds r2 e−iω
′s eiω4M ln s, where C ′ is a constant.

The factor eiω4M ln s is equal to eiω4M ln z where z = Reiθ (since we are in the complex

plane) and the absolute value of this factor is

|eiω4M ln z| = |eiω4M ln(Reiθ)| = |eiω4M(lnR+iθ)| = |eiω4M lnR|e−ω4Mθ ≤ e2πωM ,

since −π
2
≤ θ ≤ 0 (4th quadrant).

Now consider the factor e−iω
′s = e−iω

′z = e−iω
′Reiθ = e−iωR cos θ+ωR sin θ = e−iωR cos θeωR sin θ.

We have |e−iωR cos θ| ≤ 1 but eωR sin θ → 0 as R→∞ (since sin θ < 0 in the 4th quad-

rant). (This R is not to be confused with R(r) from equations (5.74) through (5.79)).

So r2eωR sin θ → 0 as R → ∞ for any finite r > 2M . Therefore, the integral of α2ωω′

converges on the boundary at infinity in the 4th quadrant. A similar analysis of

the integral for β2ωω′ shows that it converges on the boundary at infinity in the 3rd

quadrant.
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