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ABSTRACT 

 

A MATHEMATICAL ANALYSIS OF A MODEL OF 

DRUG ACTION ON INTRACELLULAR 

CALCIUM DYNAMICS 

 

Marah Townzen Funk, Mathematics 

 

The University of Texas at Arlington, 2019 

 

Faculty Mentor: Hristo Kojouharov 

The dysregulation of intracellular Ca2+ dynamics is a hallmark feature of several 

types of cancer. Administering a combination of a drug that blocks store-operated Ca2+ 

entry and a drug that inhibits tyrosine kinases is a novel chemotherapeutic approach 

currently being explored. Using data from experimental trials of these drugs, an existing 

model of Ca2+ dynamics was modified via the Michaelis-Menten theory of enzyme kinetics 

to reflect the behavior of the cell upon administration of the drugs. Mathematical analyses 

were performed to determine the overall repercussions of this modification. This included 

sensitivity analysis to reveal the model's sensitivity to changes to particular parameters and 

stability analysis to find if the model will approach equilibrium. With the goal of predicting 

drug action in mind, this expanded model is a step in the right direction but still needs 

refinement to increase accuracy and have real-world applications.
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CHAPTER 1 

BIOLOGICAL BACKGROUND 

Intracellular Ca2+ functions as an important second messenger system that regulates 

gene expression, proliferation, apoptosis, and migration. Tumor cells disrupt normal Ca2+ 

signaling pathways in order to more efficiently utilize its benefits. That is, they can 

proliferate faster, avoid apoptosis, and migrate in order to metastasize throughout the body. 

This fact can be exploited by administering drugs that target specific Ca2+ pathways in 

order to treat various types of cancer. In this case, the focus is on the drugs Afatinib and 

RP4010 (Cui et al. 2017). 

Afatinib blocks epidermal growth factor receptors (EGFRs) by inhibiting the ATP 

binding site on the tyrosine kinase (Spicer et al. 2017, Bryant et al. 2004). After EGF binds 

to an EGFR, the extracellular domain of the EGFR experiences a conformational change 

and the tyrosine kinases in the intracellular domain experience dimerization and 

transphosphorylation (Schlessinger 2002). These events are then followed by the 

phosphorylation of phospholipase C-γ (PLC-γ) (Meisenhelder et al. 1989). The activation 

of PLC-γ causes the hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2) into inositol 

1,4,5-triphosphate (IP3) and diaglycerol. This IP3 then activates the IP3 receptors (IP3Rs) 

on the ER membrane, which opens the associated channel and allows Ca2+ to flow out of 

the ER and into the cytoplasm (Rhee et al. 1992, Furuichi et al. 1989). Afatinib disrupts 

this process, keeping the Ca2+ in the ER so it can't participate intracellular signaling.  
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The drug RP4010 disrupts store-operated Ca2+ entry (SOCE). A decrease in the 

concentration of Ca2+ in the ER will trigger the activation of stromal interaction molecule 

1 (STIM1). This molecule binds to the termini of the ORAI1 subunit that forms the ion 

pore of Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 binding to this subunit 

causes the CRAC channel to open and therefore allows Ca2+ to flow into the cell 

(Bergemeier et al. 2013). The exact mechanism(s) of inhibition that RP4010 employs has 

yet to be determined, but it does prevent the opening of these channels and thus prevents 

Ca2+ entry. 

 

Figure 1.1: Diagram of Ca2+ Dynamics 

Utilizing both of these means of inhibiting Ca2+ entry into the cytoplasm provides 

a novel treatment for cancer. The actions of these drugs were incorporated into an existing 

model of calcium dynamics, with the ultimate goal being to use this model to predict the 

optimal treatment method. 
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CHAPTER 2 

ENZYME KINETICS 

The theories of mass action kinetics and Michaelis-Menten kinetics are described 

in more detail by Keener and Sneyd (2009) but are briefly summarized here.  

2.1 Mass Action Kinetics 

Mass action kinetics are used to describe reaction kinetics in terms of how fast the 

molecules collide. The law of mass action states that for two reactants, R1 and R2, that react 

to form a product P as in the reaction below: 

𝑅𝑅1 + 𝑅𝑅2
𝑘𝑘
→𝑃𝑃 

The rate at which P is produced can be written in the form of the following differential 

equation:  

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑘𝑘[𝑅𝑅1][𝑅𝑅2] 

The parameter k is a rate constant for the forward direction of this reaction. 

However, it is incorrect to say that all reactions are one way. In thermodynamics, all 

reactions are considered two way unless the reverse reaction is excessively slow compared 

to the forward reaction. In the case of a two way reaction, the forward rate constant is called 

k+ and the reverse called k-. From here the rate constants can determine the equilibrium 

constant Keq as in the equation shown below, which can then reveal whether the reaction 

favors the reactants or the products. A large Keq would mean that the reaction favors the 

reactants, while a small Keq would indicate that the products are favored.
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𝑘𝑘−
𝑘𝑘+

= 𝐾𝐾𝑒𝑒𝑒𝑒 =
[𝑅𝑅1]𝑒𝑒𝑒𝑒[𝑅𝑅2]𝑒𝑒𝑒𝑒

[𝑃𝑃]𝑒𝑒𝑒𝑒
 

2.2 Michaelis-Menten Kinetics 

When studying an enzyme-catalyzed reaction, the reaction kinetics deviate from 

the law of mass action. A catalyst will not change throughout the course of a reaction and 

unlike what the law of mass action states, the rate of an enzyme-catalyzed reaction will not 

increase linearly with the concentration of substrate. Instead, the rate will reach a maximum 

velocity after which an increase in substrate will have no effect. Michaelis and Menten 

proposed the following model to circumvent this issue.  

A substrate S will bind to an enzyme E to form a complex SE, which then 

dissociates into the product P and the conserved enzyme E. The reaction can be seen below. 

The forward rate constant of the first step is denoted k1 and the reverse is denoted k-1. Since 

the conditions following the second step are such that the product is continuously removed, 

only one rate constant is needed for that reaction, k2.  

𝑆𝑆 + 𝐸𝐸 ⇌ 𝑆𝑆𝐸𝐸 → 𝑃𝑃 + 𝐸𝐸 

Let s be the substrate concentration, e be the enzyme concentration, c be the 

concentration of the complex SE, and p be the concentration of the product. The rate at 

which the concentrations of these molecules change can be modeled with the following 

differential equations:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘−1𝑐𝑐 − 𝑘𝑘1𝑑𝑑𝑠𝑠 

𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= (𝑘𝑘−1 + 𝑘𝑘2)𝑐𝑐 − 𝑘𝑘1𝑑𝑑𝑠𝑠 

𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑑𝑑𝑠𝑠 − (𝑘𝑘2 + 𝑘𝑘−1)𝑐𝑐 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘2𝑐𝑐 

Noting that the total amount of enzyme 𝑠𝑠0 = 𝑠𝑠 + 𝑐𝑐 and assuming at equilibrium 

𝑘𝑘1𝑑𝑑𝑠𝑠 = 𝑘𝑘−1𝑐𝑐, the variable c can then be written as: 

𝑐𝑐 =
𝑠𝑠0𝑑𝑑

𝐾𝐾1 + 𝑑𝑑
 

Here, 𝐾𝐾1 = 𝑘𝑘−1
𝑘𝑘1

 . Finally, the overall velocity of the reaction V can be expressed in the 

following way: 

𝑉𝑉 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘2𝑐𝑐 =
𝑘𝑘2𝑠𝑠0𝑑𝑑
𝐾𝐾1 + 𝑑𝑑

 

By letting 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘2𝑠𝑠0, the equation can be simplified to: 

𝑉𝑉 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑
𝐾𝐾1 + 𝑑𝑑

 

Vmax is the maximum velocity the reaction can attain and K1 is the concentration of substrate 

at which the reaction rate is half Vmax. Below, Figure 2.1 depicts what the relationship 

between substrate concentration and reaction velocity looks like. In this case, Vmax was set 

at 1 and K1 was set at 0.25. The function increases quite fast at first but eventually slows 

down as it approaches Vmax=1 and begins to plateau. The reaction velocity will never reach 

its maximum because in order to do so, K1 would have to equal zero. 
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Figure 2.1: Example of Michaelis-Menten Kinetics 
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CHAPTER 3 

MATHEMATICAL MODEL 

The model used has gone through several iterations over the past 20 to 30 years 

and recently was used by Sneyd and colleagues in a study of various cell types, including 

epithelial cells similar to those used in the experiments to which this paper refers (Sneyd 

et al. 2017, Dupont et al. 2016). This base model was modified to include the effects of 

Afatinib and RP4010 on Ca2+ oscillations. Table 3.2 contains descriptions and values for 

all of the parameters seen in the equations in the following sections. 

3.1 The Base Model 

For variable notation, let c be the intracellular calcium concentration ([Ca2+]), ce be 

the calcium concentration in the ER ([Ca2+]ER), p be the IP3 concentration ([IP3]), and h be 

the IP3R activation rate via calcium. The model equations are below: 

𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐽𝐽𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚 + 𝛿𝛿(𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐽𝐽𝑝𝑝𝑚𝑚) 

𝑑𝑑𝑐𝑐𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝛾𝛾(𝐽𝐽𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚 − 𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼) 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= (ℎ∞(𝑐𝑐) − ℎ)
1

𝜏𝜏ℎ(𝑐𝑐) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜈𝜈 − 𝛽𝛽𝑝𝑝𝑑𝑑 

And the flux equations are as follows: 

𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑘𝑘𝑓𝑓𝑃𝑃𝑂𝑂(𝑐𝑐𝑒𝑒 − 𝑐𝑐) 
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𝐽𝐽𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚 =
𝑉𝑉𝑝𝑝(𝑐𝑐2 − 𝐾𝐾�𝑐𝑐𝑒𝑒2)
𝑐𝑐2 + 𝑘𝑘𝑝𝑝2

 

𝐽𝐽𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1
𝐾𝐾𝑒𝑒4

𝐾𝐾𝑒𝑒4 + 𝑐𝑐𝑒𝑒4
 

𝐽𝐽𝑝𝑝𝑚𝑚 =
𝑉𝑉𝑝𝑝𝑚𝑚𝑐𝑐2

𝐾𝐾𝑝𝑝𝑚𝑚2 + 𝑐𝑐2
 

The J terms are flux equations that represent the flow of Ca2+ through a specific 

channel in either the plasma membrane or ER membrane. The JIPR equation models the 

flow of Ca2+ through the IP3Rs and directly depends on both c and ce. If ce is greater, then 

Ca2+ will enter the cytoplasm at a greater rate and if c is greater, then Ca2+ will not flow as 

fast into the cytoplasm. The parameter kf  can be viewed as a measure of IP3R density or 

simply as a scaling factor. PO is the open probability of IP3Rs and is further expanded upon 

below. The Jserca equation models the flow of Ca2+: from the cytoplasm to the ER through 

the SERCA pump. As c grows significantly bigger compared to ce, the flux term grows 

larger to represent the increased amount of Ca2+ flowing into the ER and the opposite is 

true when c grows smaller. The ER acts as a Ca2+ storage center, so if the difference 

between c and ce is too great the cell will adjust accordingly using either IP3Rs or the 

SERCA pump. To express Ca2+ flowing into the cell from the extracellular space, leak 

channels (α0) and SOCE (the entire second term) are both lumped into the Jin equation. 

Keeping ce confined to the denominator ensures that as ce increases, the model will respond 

by reducing the Ca2+ flow into the cell. Jpm is solely concerned with the plasma membrane 

pump, which actively moves Ca2+ out of the cell. It is a standard Hill equation with Vpm as 

the maximum rate at which Ca2+ can flow through the pump and Kpm as the amount of Ca2+ 

that flows through when half of the binding sites on the pump are occupied. The parameter 
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δ is a scale factor relating the plasma and ER membrane fluxes and γ is the ratio of 

cytoplasm and ER volumes. Regarding the p equation, ßp is the rate at which p decays to 

its steady state, ps, and ν=ßp ps. 

The following equations expand upon the PO term and the 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 equation: 

𝑃𝑃𝑂𝑂 =
𝛽𝛽

𝛽𝛽 + 𝑘𝑘𝛽𝛽(𝛽𝛽 + 𝛼𝛼) 

𝛼𝛼 = 𝐴𝐴(𝑑𝑑)(1 −𝑚𝑚�𝛼𝛼(𝑐𝑐)ℎ�𝛼𝛼(𝑐𝑐)) 

𝛽𝛽 = 𝐵𝐵(𝑑𝑑)𝑚𝑚�𝑏𝑏(𝑐𝑐)ℎ(𝑐𝑐, 𝑑𝑑) 

𝑚𝑚�𝛼𝛼(𝑐𝑐) = 𝑚𝑚�𝛽𝛽(𝑐𝑐) =
𝑐𝑐4

𝐾𝐾𝑠𝑠4 + 𝑐𝑐4
 

ℎ�𝛼𝛼 = ℎ∞(𝑐𝑐) =
𝐾𝐾ℎ4

𝐾𝐾ℎ4 + 𝑐𝑐4
 

1 − 𝐴𝐴(𝑑𝑑) = 𝐵𝐵(𝑑𝑑) =
𝑑𝑑2

𝐾𝐾𝑝𝑝2 + 𝑑𝑑2
 

𝜏𝜏ℎ = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝜏𝜏4

𝐾𝐾𝜏𝜏4 + 𝑐𝑐4
 

The equations α(c,p) and ß(c,p,t) model the rates at which Ca2+ inactivates and 

activates the IP3Rs, respectively. 

3.2 The Addition of Drugs 

The two drugs are incorporated into the model as seen below, where D1 represents 

the drug effect on the plasma membrane pump and D2 represents the drug effect on the 

IP3Rs. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷1𝜈𝜈 − 𝛽𝛽𝑝𝑝𝑑𝑑 

𝐽𝐽𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝐷𝐷2𝛼𝛼1
𝐾𝐾𝑒𝑒4

𝐾𝐾𝑒𝑒4 + 𝑐𝑐𝑒𝑒4
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Afatinib reduces Ca2+ flow out of the ER by inhibiting tyrosine kinases and 

therefore negatively impacting the cascade that activates IP3Rs. In terms of the model, it 

exerts its effects through the 𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

 equation. Since RP4010 is a SOCE inhibitor, the drug is 

added to the model in such a way that increased amounts of the drug decrease the inward 

Ca2+ flow through SOCE-associated channels. To do this, D2 is placed against the term in 

the Jin equation associated with SOCE. Experimental data suggests that Afatinib also has a 

negative impact on SOCE as well, so the D2 equation contains terms modeling both drug 

effects. 

𝐷𝐷1 = 1 − 𝑓𝑓1(𝑆𝑆1) 

𝐷𝐷2 = 1 − (𝑓𝑓2(𝑆𝑆2)− 𝑓𝑓3(𝑆𝑆1)) 

The functions fi are Michaelis-Menten equations as described earlier where S1 and 

S2 are the doses (µM) of Afatinib and RP4010, respectively. To make a one-to-one 

correspondence to the equation given in section 2.2: the substrate concentration s is the 

amount of drug, Vmax is ci, K1 is ki, and V is the overall drug effect. 

𝑓𝑓𝑖𝑖(𝑆𝑆) =
𝑐𝑐𝑖𝑖𝑆𝑆

𝑘𝑘𝑖𝑖 + 𝑆𝑆
 , 𝑖𝑖 = 1, 2, 3 

Under the assumption that c oscillates in a tumor cell at a period of about 32 

seconds and in a healthy cell at a period of about 600 seconds, the parameters kf, α1, and 

τmax were adjusted from the values in the original model (Sneyd et al. 2017). They were 

adjusted so that when kf is divided by 5 and α1 is divided by 3 the healthy period is achieved, 

to represent the physiological differences between healthy and tumor cells. With the values 

seen in Table 1, the model has the tumor cell oscillating at 32.66 seconds and the healthy 

cell at 600.89 seconds. The parameters ci and ki were determined by fitting to experimental 

data relating the period of Ca2+ oscillations to a given dose of one or both drugs.  
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In order to carry out the numerical simulations, Mathworks' MATLAB software 

was used. Within that, a system of differential equations was solved with the "ode23s" 

function and the "lsqcurvefit" function was used to fit the model to the experimental data. 

Computer simulations of the oscillations can be seen in Figure 3.1. The top left chart 

displays the oscillations of healthy cells (black) and tumor cells (pink). The top right and 

bottom left show the results of administering Afatinib and RP4010 at doses of 1.5 µM, 

respectively. The final graph in the bottom right depicts the oscillations after adding 

Afatinib at a dose of 0.5 µM and RP4010 at a dose of 1 µM. 

 

Figure 3.1: Simulations of Ca2+ Oscillations 

The experimental results were obtained from Dr. Zui Pan's lab (Chang et al. 2018). 

The drugs Afatinib and RP4010 were administered to esophageal cells afflicted with 

esophageal squamous cell carcinoma at various doses separately and combined in a ratio 
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of 2:1 RP4010:Afatinib. After drug administration, the cells were given a fluorescent dye 

that marked the changes in Ca2+ concentration. The fluorescent intensities were recorded 

and the times between peaks in oscillations were calculated. Figure 3.2 depicts these 

experimental results plotted with simulated curves of the drug dose versus the period of 

Ca2+ oscillations. This model leaves room for accuracy improvements since it is clear that 

the simulated curve for the combined drug treatment does not fit well for very low doses 

or very high doses. 

 

Figure 3.2: Experimental Data and Simulated Curves 

The parameter values in Table 3.1 were taken from the model presented by Sneyd 

and colleagues in 2017 with the exceptions of kf, α1, and τmax. These were the parameters 

changed to adjust the model to fit the type of cells used in the experiments, as mentioned 

earlier. 
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Table 3.1: Parameter Descriptions and Values 

Parameter Description Value Units 
δ Adjusts the ratio of c across the plasma membrane to 

ER membrane 
1.5 N/A 

γ Ratio of cytoplasm volume to ER volume 5.5 N/A 
kf Scaling factor controlling c flux through IPR 3.9 s-1 
α0 Calcium flow through unspecified leak channels 0.0027 µMs-1 

α1 Rate constant for SOCE channels 0.385 µMs-1 

τmax Controls rate at which ß responds to changes in c 1,420 s-1 

ßp Rate at which p decays to ps 0.027 s-1 

ps Steady state of p 0.1 µM 
Vp Maximum capacity of SERCA pump 0.9 µMs-1 
Vpm Maximum capacity of PM pump 0.11 µMs-1 
K̅ Adjusts c in ER 1.9x10-5 N/A 
Ke Half-maximal ce for SOCE channels 8 µM 
Kpm Half-maximal c for PM pump 0.3 µM 
Kc Half-maximal c for IP3Rs 0.2 µM 
Kh c activating IP3Rs 0.08 µM 
Kp Half-maximal p for IP3Rs 0.2 µM 
Kτ c in response to ß 0.1 µM 
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CHAPTER 4 

MATHEMATICAL ANALYSIS 

Sensitivity analysis was performed to determine how the model responds to 

changes in particular parameters without drugs and in the presence of one or both drugs. 

This is also an important tool to use to determine how drastic of an effect any error would 

have on the results.  

4.1 Sensitivity Analysis 

To carry out sensitivity analysis, the parameters to analyze were chosen. In this 

case, the parameters were: kf, α1, all ci, and all ki. These specific parameters were the ones 

modified to fit the experimental data and the ones introduced in order to model the drug 

effect. Determining the consequences of changing and adding these parameters will 

provide insight regarding how the cell responds to the drug. After choosing the parameters, 

they were increased and decreased by 1%, 5%, 10%, and 20%. These changed parameters 

were then implemented one at a time under the following conditions: no drug, 1.5 µM 

Afatinib, 1.5 µM RP4010, and 1.5 µM Afatinib and RP4010 in a 2:1 ratio. The resulting 

periods were compared to the periods when the parameters are at baseline values to 

calculate the percentage that the periods changed.  

In the figures below the black lines represent no drug, the red lines represent 

Afatinib at a dose of 1.5 µM, the blue lines represent RP4010 at a dose of 1.5 µM, and the 

green lines represent Afatinib at a dose of 0.5 µM and RP4010 at a dose of 1 µM combined. 
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The parameter α1 has an inverse relationship with the period of Ca2+ oscillations, 

meaning that increasing α1 causes the period to decrease and decreasing α1 causes the 

 period to increase. These results are visualized in the right side of Figure 4.1. This makes 

sense because an increase in α1 will increase the Jin term which raises the rate of change of 

c compared to that of ce. The addition of RP4010 does not change this relationship. In the 

presence of Afatinib, the change in period is more exaggerated and in the presence of both 

drugs the change in period is only slightly more exaggerated. The results from comparing 

the kf simulations, as seen in the left side of Figure 4.1, are similar to the α1 results. The 

relationship between kf and period is inverse and administering Afatinib only causes this 

relationship to be more extreme. 

 

Figure 4.1: Sensitivity of the Parameters Adjusted to Fit the Model to Esophageal Cells 

 

The parameters c1 and c2 both have a direct relationship with the period, as seen in 

the top left of Figures 4.2 and 4.3. In addition to this, the presence of just one drug causes 

changes in c1 and c2 to evoke greater changes in the period than with a combination of both 

drugs. The period responds almost equally to changes in c3 (bottom left of Figure 4.2) with 

just Afatinib as it does with both drugs. Opposite to c1 and c2, there is an inverse 

relationship between c3 and period. According to the top right of Figures 4.2 and 4.3, 
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parameters k1 and k2 are also inversely related to the period. Only k2 exhibits a greater 

change in period with just one drug (RP4010) than both drugs; for k1 the change in period 

is slightly less with just one drug (Afatinib) than with both drugs. Finally, the parameter k3 

(bottom right of Figure 4.2) is directly related to the period and the magnitude the period 

changes is greater with both drugs than with just Afatinib. 

 

Figure 4.2: Sensitivity Analysis Results for the Effect of Afatinib 
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Figure 4.3: Sensitivity Analysis Results for the Effect of RP4010 

Overall, c1 causes the most change in the period of Ca2+ oscillations, with c2 

following closely behind it. At the end of the spectrum, k3 and c3 have the smallest effect 

on Ca2+ oscillations. These two parameters control the effect that Afatinib has on SOCE 

and the results of the sensitivity analysis suggest that the action of Afatinib on SOCE is 

small. Therefore, c1 and c2 would be the parameters to worry most about when it comes to 

reducing the amount of error in the model. They cause a change in period much greater 

than the change in parameter implemented, so finding well-fitting candidates for c1 and c2 

is a must. 

Most of the sensitivity plots appear linear. Although the relationship between 

parameter change and change in period is not one-to-one, where a 5% change in parameter 

would cause a 5% change in period, the change is still consistent. These plots each could 

be fitted to a linear function. For the nonlinear plots, they could be fitted to exponential or 

rational functions. Theoretically, these functions could then help find a parameter value for 

a desired period. This would make fitting the model to different types of cells easier. 

Table 5.1 contains a portion of the data generated from the sensitivity analysis of 

the 8 parameters. In it are the baseline values for all the parameters analyzed, the values of 

the parameters when increased and decreased by 10%, and the percentage that the period 
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changed as a result of the parameter change. This table demonstrates where the data plotted 

in the figures above came from and provides more detail regarding the nature of the results 

of the sensitivity analysis. 

Table 4.1: Sample Sensitivity Analysis 

Dose (µM) Parameter Baseline New Value % Change in Period 
10% -10% 10% -10% 

Aft: 0       
RP: 0  

kf 3.9 4.29 3.51 -5.92 7.18 
α1 0.385 0.4235 0.3465 -4.81 5.55 

Aft: 1.5    
RP: 0  

kf 3.9 4.29 3.51 -9.16 12.74 
α1 0.385 0.4235 0.3465 -6.84 8.19 
c1 0.51 0.561 0.459 19.29 -12.97 
c3 0.76 0.836 0.684 -2.43 2.55 
k1 0.34 0.374 0.306 -2.7 3.01 
k3 0.8 0.88 0.72 0.91 -0.84 

Aft: 0       
RP: 1.5 

kf 3.9 4.29 3.51 -7.25 8.99 
α1 0.385 0.4235 0.3465 -4.75 5.51 
c2 1 1.1 0.9 15.61 -13.32 
k2 0.6 0.66 0.54 -3.38 3.96 

Aft: 0.5  
RP: 1.0  

kf 3.9 4.29 3.51 -8.48 10.95 
α1 0.385 0.4235 0.3465 -5.73 6.71 
c1 0.51 0.561 0.459 9.39 -7.83 
c2 1 1.1 0.9 6.26 -5.38 
c3 0.76 0.836 0.684 -2.61 2.8 
k1 0.34 0.374 0.306 -3.19 3.75 
k2 0.6 0.66 0.54 -2.02 2.32 
k3 0.8 0.88 0.72 1.62 -1.72 

 

4.2 Stability Analysis 

Stability analysis was attempted using the method described by Otto and Day 

(2007). The steps for this are as follows:  

1. Find equilibrium points by setting each differential equation from the model equal 

to zero and solving for the corresponding variable.  
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2. Find the Jacobian matrix for the system by taking the derivative of each differential 

equation with respect to each variable. 

3. Substitute the equilibrium points into the Jacobian matrix. 

4. Use the characteristic polynomial calculated from solving det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = 0 to find 

the eigenvalues λi of the matrix. 

5. Interpret the eigenvalues to determine the stability of the model. 

 

The equilibrium points for p and h were trivial to find, however finding those for c 

and ce were not so. Searching for these points yielded only negative values or complex 

values for c and ce. Since negative and complex values have no biological relevance, 

stability analysis could not be performed.  
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CHAPTER 5 

CONCLUSION 

The mathematical model that was presented in this paper has its limitations, but 

still presents promising results. This model was developed by taking an existing model of 

intracellular Ca2+ dynamics and using the theory of Michelis-Menten kinetics to 

incorporate the drugs Afatinib and RP4010.  

Sensitivity analysis was performed to determine how the model responds to the 

parameters changed from the original model and the parameters introduced to model the 

drug action. The model is most sensitive to changes in c1, so Afatinib may be used to evoke 

the fastest and most efficient changes in Ca2+ oscillations. Although in practice, RP4010 

has a greater effect on Ca2+ dynamics (Figure 3.2). The sensitivity analysis also revealed 

that the effect Afatinib has on SOCE, while present, is small. Since the model shows the 

greatest sensitivity to c1 and c2, they are the most likely culprit for the error seen in the 

model and must be carefully fitted. 

Due to the model's complexity, stability analysis was unable to be performed. To 

combat this, simplification of the model or use of an older, simpler iteration may be 

necessary. However, a simpler model may respond differently to the addition of drugs and 

therefore might not return results that reflect the behavior of the current model. 

To improve the model's accuracy, perhaps the Hill equation may be useful. This 

equation is very similar to the Michaelis-Menten model, but incorporates multiple 

substrates or binding sites. The equation for this is as follows:  
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𝑉𝑉 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑖𝑖

𝐾𝐾𝑚𝑚𝑖𝑖 + 𝑑𝑑𝑖𝑖
 

In this equation, n can be viewed as the number of substrate molecules binding to 

the given enzyme or as the number of binding sites. In theory, this number would have an 

integer value. However, this is often not the case since there may be negative or positive 

cooperativity between the enzyme and substrate (Keener and Sneyd 2009).  

The model presented can be useful in predicting the results of treatments using 

doses of the drugs at mid-range values, but not values at either extreme. At these mid-range 

values using a combination of drugs produces a greater period, so it is more effective at 

reigning in the cell's use of Ca2+. Therefore, a combination of both Afatinib and RP4010 is 

more efficient at treating esophageal cancer than either drug alone because for a smaller 

total dose the same period can be achieved. Overall however, the model isn't as sensitive 

to parameter changes in the presence of both drugs. This suggests that the drugs interact in 

some way that the model does not account for. It seems as if the model is most dependent 

on c1 and c2, which is consistent with their role as maximal reaction velocities. Further 

refinement of this model may lead to more accurate predictions and therefore greater 

therapeutic benefit. This model works for Afatinib and RP4010 combined in a ratio of 1:2, 

but it could be adapted to different combinations of those two drugs. This would be 

beneficial in determining the optimal ratio of drugs in addition to finding the optimal 

amount of drug. Even different drugs could be added to the model, either in concert with 

Afatinib and RP4010 to treat cancer or completely independent of them in order to treat 

other illnesses involving Ca2+ dynamics.  
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