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ABSTRACT 

DEEP LEARNING APPLICATIONS ON IONOSPHERIC STUDIES 

Deep Learning Applications on Ionospheric Studies 

 

 

Yang Pan, Ph.D. 

The University of Texas at Arlington, 2024 

Supervising Professors: Mingwu Jin, Yue Deng 

Machine learning techniques, particularly deep learning techniques, have been vigorously pursued 

to tackle space physics problems and achieved some impressive results recently. The growth of 

deep learning technologies in different domains enables innovative solutions to those problems 

compared to conventional methods. Filling data gaps in instrumental observations is among the 

demanding issues, which benefits space physicists to study ionospheric phenomena with complete 

data coverage. Global total electron content (TEC) and regional ionospheric electron density (Ne) 

are among important physical parameters in ionospheric studies. Due to the limited coverage of 

global navigation satellite system (GNSS) ground receivers and sporadic operations of the 

Millstone Hill incoherent scatter radar (ISR), the global TEC maps and regional Ne observations 

suffer huge amount of data gaps. In this dissertation, we utilize the advanced deep learning 

methods, generative adversarial networks (GANs) and neural architectural search (NAS), to fill 

the data gaps in TEC maps and Ne patterns. We have conducted comprehensive experiments to 

demonstrate their superior performances over traditional methods. Through these studies, it 

becomes increasingly evident that the great potential of deep learning will play a key role in future 

research of ionosphere and the broader realm of space physics.  
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1 INTRODUCTION 

Atmosphere of Earth is typically defined as layers of gases surrounding the Earth [Hart, 

1978], which majorly consist of gases as Nitrogen and Oxygen under constant and complicated 

chemical reactions [Schlager et al., 2012]. The temperature serves a valuable criterion to stratify 

the atmosphere into multiple layers, including troposphere, stratosphere [Spar, 1970], mesosphere, 

thermosphere, and exosphere as shown in Figure 1.1a [Kelley, 2003]. Meanwhile, the upper 

atmosphere region between 50 to 1,000 km above sea level resides ionosphere, and its name 

indicates that ionized atoms and molecules are the ingredients. The ionosphere is stratified into 

multiple layers, including D, E and F as shown in Figure 1.1b, based on electron density distribution 

[Appleton, 1956]. 
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Figure 1.1 Stratification on (a) atmosphere and (b) ionosphere on temperature and plasma density respectively. 

[Kelley, 2003]. 

 

1.1 Ionospheric Stratification 

The source of ionized particles comes primarily from extreme ultraviolet (EUV), x-ray 

solar radiation, and energetic particle precipitation. Meanwhile, the recombination is the process 

in which charged particles are formed back into neutral molecules. The ionization and 

recombination processes [Bradbury, 1938; Mitra and Jones, 1954] make the ionosphere a quite 

dynamic environment. 
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Figure 1.2 Ionospheric layers 

[http://www.weather.nps.navy.mil/~psguest/EMEO_online/module3/module_3_2.html]. 

Normally, the Earth’s atmosphere can be generally divided into multiple layers: D, E, and 

F regions (Figure 1.2) [Cummer et al., 1998; Schunk and Nagy, 1978]. The lower ionospheric layer, 

the harder EUV reaches, which makes the ionization rate differ from layer to layer. Besides, the 

gas composition varies at different altitudes, which strongly influences the plasma density. The 

status of ionosphere can significantly impact the radio communication. During radio 

communication, the radio wave drives electron away. The neutral molecules residing within will 

collide with the wave, consuming the wave energy. Typically, the lower frequency, the higher 

chance of collision, resulting a higher absorption rate than the higher frequency waves. Therefore, 

the radio waves behave differently when propagating through the ionosphere due to their different 

frequencies [Godyak et al., 1999; Rawer, 2013].  



 4 

 

Figure 1.3 Lowell Digisonde 

[https://web.archive.org/web/20130404234733/http://www.haarp.alaska.edu/haarp/dsonde.html]. 

Noticeably, when the broadcast wave exceeds a certain frequency, called critical frequency, 

the wave will penetrate the layer without reflection [Theimer and Taylor, 1961]. And an ionosonde 

broadcasts a range of high frequencies (HF) [Davies and Baker, 1966] and measures the critical 

frequencies of different layers, as different traces shown on the ionogram (Figure 1.3) [Judd, 1987]. 

To briefly introduce those layers, the D region is the bottom ionospheric region with few 

free electrons, which is ranged about 70 to 90 km. The E region is the middle region (90 to 160 

km) and accounts for the trans-Atlantic radio wave signal in 1902 by the experiment of Guglielmo 

Marconi [Marconi, 1922]. While the upper most F region (over 160 km) has the greatest 
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concentration of electrons in three layers, which is well reflected by Figure 1.1b. The curves on 

right hand side are the electron density profiles (EDPs), and the density peak at F region is noted 

as NmF2. The corresponding F2 region critical frequency (FoF2) [Kuznetsov et al., 1998], with 

hmF2, are two of the key parameters to induce empirical EDP models such as International 

Reference Ionosphere (IRI) [D. Bilitza, 2001; Dieter Bilitza et al., 2022]. Besides, the upcoming 

Geospace Dynamics Constellation (GDC) mission [Pfaff, 2016] plans to send instrument around 

an altitude of 350km, which focuses on studies of the F region. Moreover, this layer is crucial to 

the long-distance HF radio communications. It is worth mentioning that the reduced solar radiation 

during nighttime accounts for the disappearance of D region and F1 region (Figure 1.2). The 

integral of electrons along altitudinal path in ionosphere plays another important role in addition 

to those stratified regions. 

 

1.2 Total Electron Content 

Total electron content (TEC) is defined as the integration of electron substances along the 

path in ionosphere. Global Navigation Satellite System (GNSS) [Hegarty and Chatre, 2008] is a 

constellation of satellites providing communications between orbiting instruments and receivers.  
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Figure 1.4 TEC measurement between satellite and ground receiver [Janssen, 2012]. 

 Slant TEC (sTEC) is defined as the TEC along the arbitrary path of communication 

between satellite and receiver through ionosphere. As shown in Figure 1.4 [Janssen, 2012], the 

part of line of sight from satellite to ground receiver within ionosphere is defined as slant TEC 

(STEC). Within this graph, ionospheric piercing point (IPP) is the intersection point of the line of 

sight and the ionospheric thin shell, based on the assumption of models. Electron contents inducing 
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signal phase delay can be noted in Equation 1.1 [Ruffini et al., 1998], where Li as the phase delay 

and path length si based on a specific frequency. 

𝐿𝑖 = 𝑠𝑖 −
40.3

𝑓𝑖
2 ∙ 𝑆𝑇𝐸𝐶𝑖 1.1 

STEC can be calculated using dual-frequency measurement, in which two different signal 

bands (L1 at 1575.42 MHz and L2 at 1227.60 MHz) work together to derive STEC as shown in 

Equation 1.2 [Emery and Camps, 2017; Ruffini et al., 1998], where f1 and f2 are the frequencies 

mentioned above, while L1 and L2 are the phase delays of f1 and f2, respectively. And the vertical 

TEC (VTEC) is derived directly from STEC by applying cosine based on the zenith angle 𝜒 at IPP 

(Equation 1.3, [Janssen, 2012]). 

𝑆𝑇𝐸𝐶 =
1

40.3
(

𝑓1
2𝑓2

2

𝑓1
2 − 𝑓2

2)(𝐿1 − 𝐿2) 1.2 

𝑉𝑇𝐸𝐶 = 𝑆𝑇𝐸𝐶 ∙ cos 𝜒 1.3 

With the coverages of GNSS ground receivers around the world, a global TEC map shows 

important information of ionosphere in a global scale as demonstrated in Figure 1.5. Upon the 

right-hand side color bar lies the unit for TEC, in which 1 TEC unit (TECU) equals to 1016 

electrons/m2. Besides, it can be easily seen that the better coverage of land regions over the oceanic 

counterparts. This is due to the limited number of GNSS ground receivers on oceans [Vierinen et 

al., 2016].  
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Figure 1.5 Global GNSS TEC map [Anthea Coster and Komjathy, 2008]. 

To study ionospheric activities, especially the travelling ionospheric disturbances (TIDs) 

[AJ Coster et al., 2003; Lyons et al., 2019; Nishimura et al., 2020; Tsugawa et al., 2007; S-R Zhang 

et al., 2019], the complete global TEC map provides valuable information to derive the 

disturbances including the origin, wavelength, propagation speed, and direction, etc. Figure 1.6 

shows an example of detecting TIDs over north American continent at 2017-09-07 23 UT during 

a geomagnetic storm. The differential TEC (dTEC), shown in the left panel of Figure 1.6, is 

calculated by subtracting background TEC over a time window, such as 30-minute. With the 

representative wave-like shape and repetition on dTEC, we identify the arrow-pointing region T1 

in Figure 1.6 is identified as TID [S-R Zhang et al., 2022].  
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Figure 1.6 Detection of TID based on TEC map [S-R Zhang et al., 2022], left: dTEC maps, right: of TECu maps. 

The GNSS-TEC is noted as Massachusetts Institute of Technology TEC (MIT-TEC) in the 

following sections, unless otherwise stated. The TEC map based on observation is limited and 

incomplete, however, resources providing complete global TEC maps exist. International GNSS 

service (IGS) has been providing IGS global TEC (IGS-TEC) data since June 1998, with the help 

of cooperation among five members of IGS Ionosphere Associate Analysis Centers (IAACs) [M. 

Hernández-Pajares et al., 2009]. The global IGS-TEC maps are produced based on the harmonic 

coefficients and appear smooth as shown in Figure 1.7. IGS-TEC is a reliable complete TEC map 

source for us to apply machine learning models, which we will explain in detail in later chapters. 
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Figure 1.7 The IGS-TEC maps at three time points: 2012-10-07 08UT, 2015-03-17 12UT, and 2019-05-18 16UT [Pan et 

al., 2020]. 

 

1.3 Ionospheric Electron Densities 

As seen in Figure 1.1b, the electron density profile (EDP) exhibits a certain pattern. 

Different from TEC measurement, the EDP includes detailed information of electron densities at 

varied heights. Incoherent scatter radar (ISR) is a powerful ground antenna measuring ionospheric 

parameters including electron density, ion and electron temperature, drift velocity, etc [Wannberg 

et al., 1997]. Electron density shows a strong region-based characteristics, and the Millstone Hill 

(42.6°N, 71.5°W, dip 71.6°), ISR (MLH-ISR) provides valuable data for investigations at mid-

latitude. The example of EDP provided by MLH-ISR (available at site: 

http://cedar.openmadrigal.org/) is shown in Figure 1.8. Zenith stands for the zenith radar, which is 

fixed and vertical-directing antenna along with the other radar called Millstone Hill Steerable 

Antenna (MISA). As the name indicated, MISA is steerable and scans a certain region. Both two 

radars consume a large amount of resource, majorly electricity, to operate. Therefore, Figure 1.8 

has shown data gaps of radar off-hours from 00 UT to 20 UT. To describe electron density 

quantitatively, a logarithm (log10Ne) is applied, where Ne is the notation for electron density. 

http://cedar.openmadrigal.org/
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Figure 1.8 MLH-ISR recorded vertical profile of 2023-10-26 [http://cedar.openmadrigal.org/]. 

In addition to MIT-TEC observations, empirical models also exist to provide complete 

global electron density profiles. International Reference Ionosphere (IRI) [D. Bilitza, 2001; Dieter 

Bilitza et al., 2022] considers ionosonde observations and is parametrized to the solar and magnetic 

activities, such as sunspot number, F10.7 index, Ap3 index. Noticeably, IRI has been updated 

regularly and the latest versions are IRI-2016 and IRI-2020 [Dieter Bilitza et al., 2022]. By filling 

the data gaps of ISR record electron density profiles, we could provide more useful information 

for studies on regional ionosphere than empirical models. In Chapter 5, we will introduce the 

studies on the prediction of ionospheric electron density using neural networks.   

 

1.4 Machine Learning in Ionospheric Studies 

“Let data speak for themselves.”, which might summarize the growing artificial 

intelligence (AI) techniques in recent decades. The various domains include the image processing, 

natural language processing (chatGPT, [Ray, 2023]), vehicle automation [Vishnukumar et al., 

2017], etc. Research is no exclusion in getting benefits from the development of AI technologies 

as we witness increasing number of publications using machine learning (ML) algorithms to 
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address topics in space physics. Conventionally, the physical mechanism for each phenomenon is 

the priority, where large amount of experimental data could be presented by formulas and be used 

to refine these formulas. However, in most realistic sceneries, the system might be too complicated 

to be described by simple equations. Such as the electron densities in ionosphere depends not only 

on ionization and recombination processes, but also the interaction with mesosphere and 

thermosphere (mesosphere, ionosphere, and thermosphere coupling, or MIT-coupling [Laštovička 

et al., 2014; Qian et al., 2014]). Besides, the background neutral densities have a say in affecting 

the ionospheric electron densities. The IRI [D. Bilitza, 2001; Dieter Bilitza et al., 2022] is the 

empirical model suiting description of the ionospheric electron density on a monthly scale, while 

lacking the diurnal (day-to-day) variations. Machine learning methods are majorly data-driven, 

where data themselves include rich information of non-linearity. Machine learning methods use 

the penalty-mechanism to guide its learning process to reach the optimal model that describes the 

data distribution, which is particularly useful for forecasting or filling some missing physical 

parameters. 

Various machine learning methods have been applied in space physics. As one of the 

representative algorithms, deep neural network (DNN [Goodfellow et al., 2016]) extracts the 

characteristics of large amount of input data by processing them with multiple neural network (NN) 

layers. Each layer is composed of multiple neurons fulfilling the weighted summation of inputs 

followed by a non-linear activation as shown in Equation 1.4, where wi stands for weight and xi is 

the input from previous layer, while bi is the bias. The non-linear activation function is noted as 

f(), some frequently used examples include, sigmoid, tanh, and ReLU [Dubey et al., 2022; Narayan, 

1997]. 
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𝑦 = 𝑓(∑ 𝑤𝑖 ∙ 𝑥𝑖

𝑖

+ 𝑏𝑖) 
1.4 

As an example of full-connected DNN is shown in Figure 1.9, the weighted summation 

with bias passing through an activation function is highlighted and zoomed in the red box. A DNN 

consists of three types of layers: input layer, hidden layers (noted “deep” if more than two), and 

output layer. The input parameters are processed through these layers, eventually reach the output 

node, i.e. electron density in this work. 

 

Figure 1.9 Architecture of deep neural network, the weighted summation section is zoomed. 
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Figure 1.10 Deep convolutional generative adversarial network – Poisson blending (DCGAN-PB) architecture [Pan et 

al., 2020]. 

 

For global total electron content maps a more advanced network called generative 

adversarial network (GAN) is used. The GAN was proposed to generate artificial data closely 

resembling the real data [I Goodfellow et al., 2014]. As shown in Figure 1.7, the global TEC maps 

could be treated similarly to the images of human face, especially when the map is plotted in local 

time rather than longitude as the day-side solar radiation contributes as the major source for 

ionization. GAN contains two essential modules, the generator and discriminator. We develop a 

deep learning model to generate complete global TEC maps with deep convolutional GAN with 

Poisson blending (DCGAN-PB) [Pan et al., 2020], and the architecture is displayed in Figure 1.10. 

Briefly, the generator produces fake complete TEC map samples and tends to fool the discriminator, 

which judges the source of the sample either real or fake. The gambling game pushes both 

generator and discriminator more and more precise until the trained generator can produce fake 

samples, so that the discriminator can no longer differentiate them from the real samples. Finally, 
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the trained generator is used to perform image completion(/inpainting) tasks. Moreover, the 

particular structure of GAN models does affect the inpainting results. Therefore, we further 

develop an advanced GAN model to improve over DCGAN-PB. Both TEC map completion GAN 

models and the electron density prediction model will be presented in detail in the following 

chapters. 
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2 METHODOLOGIES 

Our focused domain lies in the ionosphere on two major parameters: total electron content 

(TEC) and electron density (Ne). And by walking through the background of ionosphere, the 

mechanism under the hood to decide TEC and Ne is dynamic and complicated, which leads to the 

stage set for surging machine learning applications.  

In the following sections, the methodologies will be introduced and described in detail. 

Thereafter, the results will be shared and discussed to evaluate the machine learning performance. 

 

2.1 Generative Adversarial Networks 

Two essential modules of generative adversarial networks (GANs), the generator and the 

discriminator, were briefly mentioned in section 1.4. Figure 1.10 has shown the architecture of deep 

convolutional GAN with Poisson blending (DCGAN-PB). The generator (denoted as G) coins fake 

graphs (denoted as G(z)), and z is the input as a random vector in this specific case). While the 

discriminator (denote as D) takes the input with no knowledge on its source. Either a fake sample 

produced by generator or a real case from the training dataset will be sent to the discriminator. And 

the discriminator works to identify its source and gets penalized when making wrong judgements. 

Meanwhile, the generator tries to coin more deceitful samples to fool the discriminator. Two 

modules (D and G) are trained in a competitive way until the discriminator is unable to distinguish 

the artificial data from the real data, which means that the generator evolves the capability to fake 

sample resembling the real ones. Then the trained generator serves the important inpainting step 

as shown in Figure 1.10: an incomplete TEC map y provides the ground truth pixels for the coined 

sample G(z). The inpainting error, normally root mean squared error (RMSE), evaluates between 
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the coin sample G(z) and incomplete case y on the overlapping locations. Then same procedure is 

done with another initial vector 𝑧′ , which leads to a new corresponding error. Generator gets 

constant feedback from the inpainting error and adjusts the initial vector until a desired number of 

epochs is exhausted. Based on 𝑧∗, the coined sample 𝐺(𝑧∗) resembles the ground truth with the 

lowest possible inpainting error and serves as the cap over the ground truth. Finally, all the 

procedures form into a complete TEC map f. For the detailed architecture of DCGAN-PB, we 

followed that of a stable DCGAN learning [Radford et al., 2015] with certain modifications, and 

the architecture detail is included in APPENDIX A.  

𝑧∗ = min
𝒛

ℒ𝐶(𝒛|𝑦, 𝑀) + ℒ𝑝(𝒛) = min
𝒛

‖𝑊⨀(𝐺(𝒛) − 𝒚)‖1 + 𝜆 log(1 − 𝐷(𝐺(𝒛))) 2.1 

𝑊𝑖 = {
∑

1 − 𝑀𝑗

𝑁
𝑗∈𝜘𝑖

 𝑖𝑓 𝑀𝑖 = 1

0                   𝑖𝑓 𝑀𝑖 = 0

 2.2 

  

Typically, the machine learning models own a loss function to give feedback on model 

performance and guide the optimization. With the notations introduced above, the loss function of 

DCGAN-PB is described at Equation 2.1. As described when introducing the architecture (Figure 

1.10), the optimal vector 𝒛∗  is searched by starting from an initial random vector 𝒛  and an 

incomplete TEC map 𝒚. For the two loss functions, ℒ𝐶  denotes for context loss and ℒ𝑝 is the prior 

loss. Within the context loss calculation ℒ𝐶(𝒛|𝑦, 𝑀), 𝑀 stands for the binary mask corresponding 

to 𝒚, where the pixel locations of data gaps are marked as zeros and the remaining as ones with 

available TEC value. While for the weights 𝑾 , i and j are the pixel indices and 𝜘𝑖  is the 

neighborhood of pixel i with N as the number of neighbor pixels. This design highlights the 

observed data points closer to the missing data region, while the pixels with missing data or 
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surrounded by observed data have zero contribution to the weight. Besides, the prior loss describes 

the discriminator loss for DCGAN training. 

min
𝑓

∬ |∇𝑓 − ∇(𝐺(𝒛∗))|2
⬚

Ω

 2.3 

 

Especially for DCGAN-PB, Poisson blending is applied as a post-processing step when the 

coined sample 𝐺(𝒛∗)  is capped over the incomplete TEC map. Let Ω  notes the gap region of 

missing data, the ∇ is the gradient operator, and the 𝑓 is the ground truth outside Ω. Equation 2.3 

tries to bridge gradients between the surrounding ground truth pixels and filled pixels of 𝐺(𝒛∗). 

The smoothness is achieved and the mosaic-looking artifacts are largely reduce, which is to be 

explained in the results section in detail. 

 

Figure 2.1 The overall model architecture of SNP-GAN [Pan et al., 2021]. 
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Another GAN application, spectrally normalized patch GAN (SNP-GAN) presents a more 

advanced GAN model with its advantages. As shown in Figure 2.1, the two-stage generator is 

highlighted with details. The most noticeable part is the “end-to-end” generator, in which the input 

and output are both TEC map (incomplete global TEC map as the input in SNP-GAN), instead of 

the vector to map flow in DCGAN-PB (Figure 1.10). Encoder-decoder is a commonly used module 

to extract necessary characteristics in the latent space, which is defined as the data of different 

dimensions within the module. Dilated gated convolution (DGC) applies the kernel of sparse 

version with background pixels in between, and the global features could be extracted compared 

to the typical kernel. In which the typical kernel extracts regional feature of the image and is 

confined to the kernel size. If we define missing data of the incomplete map as foreground and the 

ground truth as background, contextual attention (CA) learns to obtain feature information from 

the background to fill the foreground.  

Before describing the loss functions of SNP-GAN, a complete global map (𝑥) might be 

covered with a mask (𝑚) with the element-wise product 𝑥 ⊙ 𝑚 and resulting a incomplete global 

map (𝑧). The coarse network is defined as the first-stage of the generator, which points to the output 

𝐺𝑐𝑜𝑎𝑟𝑠𝑒 (𝑧, 𝑚)  right after the first encode-decoder module. While the counter-apart part of the 

generator 𝐺(𝑧, 𝑚) includes the second encoder-decoder module where two encoders (DGC and 

CA) are concatenated. The generator loss ℒ𝐺  is defined below: 

ℒ𝐺 = 𝛼1 × 𝔼𝑥~ℙ𝑥(𝑥)[|𝑥 − 𝐺𝑐𝑜𝑎𝑟𝑠𝑒(𝑧, 𝑚)| + |𝑥 − 𝐺(𝑧, 𝑚)|] + 𝛼2 × (−𝔼𝑧~ℙ𝑧(𝑧)[𝐷(𝐺(𝑧, 𝑚))]) 2.4 
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the entropy is denoted as 𝔼 and ℙ is the distribution space. While the two weights 𝛼1 and 𝛼2 are 

adjustable hyper-parameters. Then for the discriminator loss ℒ𝐷: 

ℒ𝐷 = 0.5 × 𝔼𝑥~ℙ𝑥(𝑥)[𝑅𝑒𝐿𝑈(1 − 𝐷(𝑥))] + 0.5 × 𝔼𝑧~ℙ𝑧(𝑧)[𝑅𝑒𝐿𝑈(1 + 𝐷(𝐺(𝑧, 𝑚)))] 2.5 

 

where the rectified linear unit (ReLU) activation function is defined as: 

𝑅𝑒𝐿𝑈(𝑥) = {
0    for 𝑥 ≤ 0
𝑥    for 𝑥 > 0

 2.6 

 

2.2 Neural Network Aided with Neural Architecture Search 

The neural networks (NNs) have long been applied to model on ionospheric electron 

densities as we have mentioned in the introduction section, which is one of the most powerful 

machine learning methods for regression and classification. Usually, the neural network consists 

of the input layer, the hidden layer(s), and the output layer. Each hidden layer is made of multiple 

nodes, so called neurons. Each neuron performs a non-linear activation of the weighted sum of 

outputs from the previous layer. When the number of the hidden layers is equal to or greater than 

two, the NN is called the deep neural network (DNN) otherwise the single-layer neural network 

(SLNN). Given the input and output variables x and y, respectively, a DNN model makes 

prediction as 𝒚 = 𝑓(𝛩, 𝒙|𝛬) , where 𝛩  is the trainable parameters (i.e. weights and biases 

connecting neurons) and 𝛬  is the hyperparameters defining the network structure and training 

conditions (such as the number of layers, the number of neurons in each layer, dropout, optimizer, 

learning rate, etc.). If 𝛬 is fixed and the training data are Xtrain and Ytrain, 𝛩 can be optimized by the 

following training: 
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𝛩∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 
𝛩

𝑙𝑜𝑠𝑠 (𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑓(Θ, 𝑥𝑡𝑟𝑎𝑖𝑛|Λ)) , 𝑓𝑜𝑟(𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) ∈ {𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑟𝑎𝑖𝑛} 2.7 

 

where “loss” is the loss function measuring the overall difference between the observations and 

the model predictions on the training data.    

However, Equation 2.7 only optimizes on 𝛩 for a fixed network, i.e., fixed 𝛬. Based on the 

task and data, the performance of DNN is also dependent on the hyperparameters 𝛬. Manually 

tuning these hyperparameters could become tedious and time consuming, and lead to 

unsatisfactory results such as over-complicated models, long training time, or large test errors if 

not tuned properly [Thomas Elsken et al., 2017; T. Elsken et al., 2019]. The search algorithms were 

developed to obtain the optimal solution automatically in a pre-defined hyperparameter space.   

Automatic machine learning (AutoML) has become a viral research topic as machine 

learning is widely applicable in many fields [Hutter et al., 2019]. It enables researchers in the field 

other than machine learning to build their models more efficiently. Neural architecture search 

(NAS) [T. Elsken et al., 2019] is one subject of AutoML and aims to search to the best NN for a 

given task and dataset, whose flow chart is summarized in Figure 2.2. Reinforcement learning 

[Baker et al., 2016; Zoph and Le, 2016] was first proposed for NAS, followed by gradient methods 

[H Cai et al., 2018a; Luo et al., 2018], evolutionary algorithms [Desell, 2017a; b; Guo et al., 2020; 

Real et al., 2017; Suganuma et al., 2017], and network morphism [H Cai et al., 2018b; Thomas 

Elsken et al., 2017; Jin et al., 2019]. NAS aims to find the optimal network structure through the 

following alternative optimization, 

Λ∗ = 𝑎𝑟𝑔 min
𝛬

 𝑐𝑜𝑠𝑡(𝒚𝑣𝑎𝑙 , 𝑓(𝛩∗, 𝒙𝑣𝑎𝑙|Λ)), 𝑓𝑜𝑟 (𝒙𝑣𝑎𝑙 , 𝒚𝑣𝑎𝑙) ∈ {𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙} 2.8 
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𝛩∗ = 𝑎𝑟𝑔 min
𝛩

𝑙𝑜𝑠𝑠 (𝒚𝑡𝑟𝑎𝑖𝑛 , 𝑓(𝛩, 𝒙𝑡𝑟𝑎𝑖𝑛|𝛬∗)) , for(𝒙𝑡𝑟𝑎𝑖𝑛 , 𝒚𝑡𝑟𝑎𝑖𝑛) ∈ {𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑟𝑎𝑖𝑛} 2.9 

 

where the data are divided into the training set {Xtrain, Ytrain} and the validation set {Xval, Yval}. 

While “cost” is the cost function measuring the model prediction error on the validation data {Xval, 

Yval}, and “loss” is the loss function measuring the model fitting error on the training data {Xtrain, 

Ytrain} with a fixed 𝛬∗. 
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Figure 2.2 Flow chart of Neural Architecture Search (NAS). 
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AutoKeras [Jin et al., 2019] with a high-level user interface is a NAS method based on 

network morphism, which modifies the NN using the morphism operations, such as inserting a 

layer or adding a skip-connection. To search the optimal network structure, a hierarchical tree 

structure is used, whose basic component is the node. For instance, the mother node is an abstract 

idea of the NN configuration, which is followed by a child node consisting of dense layers, 

activation layers, normalization layers, etc. The other child nodes include learning rate and training 

optimizer. Each child node can serve as the parent node for the nodes connected at the next level, 

and a tree structure is conducted. Finally, the leaf is an end node without any child node. The 

hyperparameter space defined in Table 2.1 is the result of large number of empirical searches with 

different combinations. The neuron number in each layer no greater than 64 has already offered 

decent result for both SLNN and DNN. For DNN, the layer number is refrained to no more than 4 

based on the literatures (such as the global 3D Ne model to predict density maps mainly for 200 to 

400 km altitude [W Li et al., 2021]) and our preliminary trials. The most noticeable is the learning 

rate search polls. To achieve stable and converging models, larger learning rates fit the SLNNs 

while DNNs prefers comparatively smaller ones. The reason is that a more complicated neural 

network structure requires more fine tuning, and hence a smaller learning rate will have a higher 

chance of leading to a more stable model as judged by the loss curves. However, a lower learning 

rate does not guarantee a smaller converged loss value. Thus, manual tuning on learning rates 

becomes undesirable with consideration on the efficiency.  Besides, Adam optimizer [Kingma and 

Ba, 2014] is fixed as the training optimizer for all the models which is not explicitly mentioned in 

the table. 
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Table 2.1 Hyperparameter space of NAS. The candidates in each hyperparameter poll are the optimal results of 
multiple trials. For instance, the single layered architecture prefers a larger learning rate than the deep neural 
architecture. 

Hyperparameter Range 

Number of layers 
SLNN: [1] 

DNN: [2, 3, 4] 

Neuron number [16, 18, 20, …, 64] 

Learning rate 
SLNN: 9e-04, 8e-04, …, 1e-04 

DNN: 5e-04, 4e-04, …, 5e-05 

 

Three representative search algorithms in AutoKeras for NAS are: random search, greedy 

search (GS), and Bayesian optimization (BO). A trial is defined as a round of optimization of 

Equation 2.8 with a single set of hyperparameter configuration when the early stopping criterion, 

i.e., no significant improvement of the objective function, is met. Besides, the maximum allowed 

number of trials is defined as 200 at the beginning. For those three search algorithms, random 

search randomly picks a hyperparameter configuration without repetition for each trial until the 

number of trials is reached. Apparently, the random search suffers the computational inefficiency 

(longer computation time and inferior model performance) in searching the hyperparameter space 

as there is no mechanism to guide the search directions compared with greedy search [Thomas 

Elsken et al., 2017; G Li et al., 2020] and Bayesian optimization [Dey et al., 2020]. The greedy 

search (GS) selects a node with a probability inversely proportional to the number of leaves of that 

node. The other hyperparameters in the search space will be picked randomly first, then as the 

previous best trial to form a trial configuration. Therefore, the advantage for the greedy search 

over the random search is that the search can always return to the best trial when the new 

configuration does not offer better performance. Each trail of the Bayesian optimization (BO) [Dey 

et al., 2020; Snoek et al., 2012] consists of a loop of update, generation, and observation. A neural 

network kernel function is defined to measure the edit-distance between two network structures, 
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which will enable the Gaussian process-based update of the network architecture. Upper-

confidence bound is used for the cost function, whose optimization leads to generation of the next 

network architecture 𝛬∗. The observation is to obtain the optimal weights 𝛩∗ for the new network 

architecture as shown in Equation 2.9. These three steps repeat until the pre-defined trial number 

is reached. More details of AutoKeras can be found in [Jin et al., 2019]. To compare the 

computational efficiency of three search algorithms, some initial runs were conducted by defining 

a maximum number of trials of 200 and a maximum number of epochs of 200. The random search 

always used up all 200 trials with MAE inferior to GS and BO, while GS and BO usually reached 

the optimal solution in less than 100 trials. In addition, both GS and BO averaged around 80 epochs 

per trial while the random search peaked over 150 epochs per trial by average. Under the current 

dataset and 200 maximum trials, the BO optimal model of first 50 trials almost led to twice the 

MAE of GS and a much more complicated architecture ([1024, 128, 16, 1024, 256]) than that of 

GS ([16, 64, 32]). Thereafter, the greedy search (GS) algorithm is used for all the following 

experiments. 
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3 TEC Map Completion using DCGAN and Poisson Blending 

3.1 Introduction 

Total electron content (TEC) is an important parameter characterizing the ionospheric 

plasma number density [Mannucci et al., 1998]. Especially, the dynamic TEC value can be used 

to identify traveling ionospheric disturbance, which can be caused by geomagnetic storm events. 

TEC also influences the communication between satellites and the ground stations and has been 

included as a parameter in the space weather forecasting [Afraimovich and Astafyeva, 2008; Azeem 

et al., 2015; A J Coster et al., 2017; Jakowski et al., 2002; Lyons et al., 2019; McGranaghan et al., 

2018; McGranaghan et al., 2017; S-R Zhang et al., 2017]. The measurement of TEC values 

requires the receivers on the Earth surface. However, due to the limited coverage, for example, 

barely no receivers on the oceans that takes about 70% of the Earth surface, the observational data 

of TEC are incomplete for a global map. For example, if the observed TEC values are mapped 

onto a 2-D geographical map, a huge amount of missing data in the ocean parts will occur. 

Massachusetts Institute of Technology (MIT)-TEC is a large public database recording huge 

amount of TEC observations since 2000, currently involving 6,000+ global navigation satellite 

system (GNSS) receivers. On the other hand, international GNSS service (IGS) has been providing 

IGS Global TEC (IGS TEC) data since June 1998, with the help of cooperation among five 

members of IGS Ionosphere Associate Analysis Centers (IAACs) [M. Hernández-Pajares et al., 

2009]. The complicated processing, including analysis and validation algorithms, leads to the final 

IGS TEC maps. First, all five IAACs apply their distinct algorithms to fit the observations from a 

few hundred GNSS sites to form the 2-D TEC maps. Then the results are compared based on 

different parameters, such as vertical TEC (VTEC) performance, slant TEC (STEC) performance, 

and delay code biases (DCBs) estimations, to get the best-fitted map. A large amount of manual 
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work is needed to finally produce a single complete global TEC map. To alleviate the large amount 

of manual work needed in TEC map completion, automatic processing methods are in demand to 

provide a timely and reliable solution. 

Artificial intelligence (AI) has been a blooming research topic for the last decade. It shows 

great potential on replacing human beings in challenging and time-consuming works, such as 

language translation, gaming, and driverless automobile [Stallkamp et al., 2012]. AI techniques 

have been adapted in space science, mostly for predication and pattern recognition. For example, 

a support vector machine (SVM) model was developed to predict high-latitude ionospheric phase 

scintillation [McGranaghan et al., 2018], and a deep learning model was used to extract auroral 

key local structures from large amount of auroral images to lessen intense labor of human experts 

[Q Yang et al., 2019]. The recent fast growth of AI has been spurred by deep learning algorithms. 

Deep neural network (DNN) is one of the most representative deep learning algorithms, which 

disperses and discovers the properties of a huge amount of input data by processing them in 

multiple neural network (NN) layers [Ciregan et al., 2012]. Each layer is filled with neurons as a 

weighted sum and usually a nonlinear activation of outputs from a previous layer. Finally, the 

output layer makes either classification or estimation based on the problem in hand. Deep 

convolutional neural network (DCNN), one important category of DNN, uses convolutional 

operations in hidden layers to extract hierarchical feature patterns in data. It can take 1-D or 

multidimensional arrays, such as 2-D images, as the input and adds convolution operation in each 

layer of DNN [Dumoulin and Visin, 2016; Krizhevsky et al., 2012]. DCNN requires little hand-

engineering of data, for example, images, compared to conventional machine learning methods 

because it learns the best filters to extract most useful features in data through the training, which 

is particularly suitable for automatic completion of TEC maps. In 2014, the generative adversarial 
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network (GAN) has been proposed [I J Goodfellow et al., 2014], which can generate artificial data 

closely resembling the real data. GAN includes two DNNs: the generator and the discriminator. 

The generator produces the fake data from the random initialization to mimic the real data, while 

the discriminator is used to distinguish the fake data from the real data. The back propagation is 

used to improve the generator and the discriminator performance in a competition between two 

DNNs. The successful training of GAN leads to the artificial data that are hardly distinguishable 

from the real data [Yeh et al., 2017] and, therefore, a model capable of representing the physical 

situation. The deep convolutional GAN (DCGAN) [Radford et al., 2015] has been utilized to 

successfully generate fake human face images [Kim, 2016]. An improved version of DCGAN has 

been applied to recover the artificially masked human face images and showed decent recovery 

results [Brandon, 2016]. One of the reasons that neural works perform so well in their applications 

is the large database. Usually, we are targeting at a class of thing, for instance, a bike or road signs, 

and they have their properties, the distribution of pixels. The more available data are, the better 

neural networks would get by optimizing the weights repeatedly. Moreover, neural networks are 

highly customizable. With customized number of convolutional layers, it can dig out the hidden 

features. Deep learning is the process of coding and recording the empirical like human beings. 

Recently, we proposed a regularized DCGAN (RDCGAN) for data completion of TEC 

maps [Chen et al., 2019]. The RDCGAN work is aimed to complete the MIT TEC maps using 

DCGAN. Since there were no complete MIT TEC maps for training, RDCGAN was developed 

with an additional reference discriminator (i.e., RDCGAN has two discriminators and one 

generator) where the generated TEC maps are regularized by the complete IGS TEC maps to 

improve the TEC completion performance. In this work, we aim to learn IGS TEC completion 

process through DCGAN, which is considerably simpler than RDCGAN. This work is not a direct 
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extension of RDCGAN work but rather a parallel development of machine learning methods for 

automatic space physics data processing. 

Although DCGAN can generate the missing TEC values that have the correct content 

aligned with the surrounding available observations, those generated TEC values may have some 

baseline shift and not join the surrounding observations continuously. Thus, directly overlying the 

DCGAN generated TEC values on the missing regions in the original TEC map leads to the 

“mosaic” artifact. To address this issue, we adapt Poisson blending [Gangnet and Blake, 2003] 

after DCGAN, which blends the values according to the gradients around the gaps instead of direct 

use of the recovered values from DCGAN. Poisson blending has wide applications such as the 

reconstruction of 3-D surfaces from point samples robustly with fine details [Kazhdan et al., 2006]. 

As shown by our experiments, this postprocessing method can lead to significantly improved 

completion performance. We also investigate the influence of training data size and missing data 

pattern on the proposed DCGAN model and compare DCGAN with conventional image inpainting 

methods. 

 

3.2 Data and Experiments 

All IGS-TEC data are downloaded from https://cdaweb.gsfc.nasa.gov/pub/data/gps/ 

[Manuel Hernández-Pajares, 2004] for the time period from 1 June 1998 to present. Each IGS 

TEC map is averaged over a time interval of 2 hour in Universal Time (UT) and resized from a 

73 × 71  matrix to a 64 × 64  matrix by using 2-D cubic interpolation [Shepard, 1968], 

corresponding to a spatial resolution of 5.6° in longitude and 2.8° in latitude. The abnormal data 

out of the range of usual TEC values (>999 absolute TEC units [TECu]) are discarded. The total 

number of available IGS TEC maps for training and test is 91,579.  
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3.2.1 Random Mask Experiment 

In the first experiment, we demonstrate the impact of the amount of training data and 

Poisson blending on the completion performance of DCGAN using random masking. DCGAN 

was first trained using (1) 2 years of IGS TEC maps (January 2010 to December 2011) for the 

same time period as our previous work [Chen et al., 2019] and (2) about 12 years of IGS TEC 

maps (June 1998 to December 2010) for one solar cycle. Three TEC maps at 2012-10-07 08:00 

UT, 2015-03-17 12:00 UT, and 2019-05-18 16:00 UT were selected as test data, representing 

medium, high, and low solar activities, as shown in Figure 1.7. Three types of random masking are 

tested as shown in Figure 3.2: (1) 15% missing data with 2 × 2 minimum gap size (the minimum 

gap size means the smallest size of any missing data area; each pixel denotes 5.6° in longitude [𝑥] 

and 2.8° in latitude [𝑦]); (2) 40% missing data with 2 × 2 minimum gap size; and (3) 15% missing 

data with 4 × 4  minimum gap size. In addition to the completed TEC maps for those three 

representative times shown in Figure 1.7, the root mean squared error (RMSE) using randomly 

selected 360 IGS TEC maps in the year of 2012, 2015, and 2019 is used as a quantitative measure 

in Equation 3.1: 

𝑅𝑀𝑆𝐸 = √∑
(𝑓𝑖 − 𝑓�̃�)

2

𝑁

𝑁

𝑖=1

 3.1 

where 𝑓𝑖 is the original TEC value, 𝑓�̃� is the recovered TEC value, and N is the total number of 

missing TEC values. In addition to RMSE, we applied Bland–Altman (BA) plot [Altman and Bland, 

1983] as another criterion to quantify TEC completion performance. The BA plot is used to 
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evaluate the agreement between the original TEC values and the filled TEC values using different 

methods. The 𝑥 and 𝑦 coordinates on the BA plot for the ith missing TEC value are calculated as: 

(𝑥𝑖 , 𝑦𝑖) = (
𝑓𝑖 + 𝑓�̃�

2
, 𝑓𝑖 − 𝑓�̃�) , for 𝑖 = 1,2, … , 𝑁 3.2 

thus, the BA plot highlights the distribution of filled TEC values from the true ones with the bias 

and 95% confidence intervals labeled as horizontal lines. 

 

Figure 3.1 The test IGS TEC maps at three time points: 2012-10-07 08:00 UT (medium solar activity), 2015-03-17 12:00 

UT (high solar activity), and 2019-05-18 16:00 UT (weak solar activity) [Pan et al., 2020]. 

 

 

Figure 3.2 The different random masking methods (overlaid on the TEC map at 2015-03-17 12:00 UT), from left 
to right: (1) 15% missing data with 2 × 2 minimum gap size; (2) 40% missing data with 2 × 2 minimum gap size; 
and (3) 15% missing data with 4 × 4 minimum gap size [Pan et al., 2020]. 
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3.2.2 MIT-TEC Mask Experiment 

In the second experiment, we extract a more realistic mask using the MIT-TEC data 

(obtained from the Madrigal database, http://www.openmadrigal.org), so-called MIT-TEC mask 

as shown in Figure 3.3. The missing data, mostly in the oceans and polar regions, are about 52% 

of the total data (white regions in Figure 3.3). It represents a more realistic and challenging case 

for TEC map completion as the missing part takes a large portion of the map and is continuous. In 

this case, IGS-TEC data about 18 years were used for DCGAN training and Poisson blending 

(“DCGAN-PB”) to get the final completed maps. 

 

Figure 3.3 The MIT-TEC mask overlaid on the TEC map at 2000-07-14 14:00 UT [Pan et al., 2020]. 
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For comparison, two traditional image inpainting techniques, TELEA [Telea, 2004] and 

Naïve-Stokes (NS) [Bertalmio et al., 2001], are also applied to complete TEC maps. Starting from 

the peripheral intensities of the data gap, these two inpainting methods recover the gap value 

accordingly from external to internal of the gap through applying the weights on the surrounding 

ground truths of the pixel to be filled. Both methods have shown decent image inpainting 

performance [Bertalmio et al., 2001; Telea, 2004]. 

Since it is more meaningful for space weather application to evaluate the performance of 

different methods under high solar activities than low solar activities, three representative time 

points are selected: 2000-07-14 14:00 UT, 2003-11-01 10:00 UT, and 2015-03-17 12:00 UT. In the 

following section, the completed TEC maps and RMSE from our DCGAN-PB method, TELEA 

and NS have been compared. In order to avoid the appearance of test cases in the training set, a 

ten-fold cross-validation of DCGAN-PB is applied. In each fold, TEC maps of 18 years are used 

for training and the remaining 2 years for testing. We select three cross-validation sets to 

reconstruct TEC maps at those three time points. 

 

3.2.3 Cross-Validation Experiment 

A criterion for a success ML model is the variety of the training dataset. As the solar 

radiation dominates the ionization process, the solar activity contributes significantly to the TEC 

in a global scale. One solar cycle has approximately eleven years, and the database is selected with 

care based on that fact. In both GAN models, we take the IGS-TEC data from 1999 to 2018, a total 

of 20-year, as the whole dataset. Different durations of training data are taken to test the effect of 

Poisson blending. Cross-validation is the strategy we applied, and the 20-year has been classified 
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into high solar activity and low solar activity based on the annual mean F10.7 of 100 solar flux 

unit (sfu) as shown in Table 3.1. Besides, in each test year 50 IGS-TEC maps are selected to 

calculate the errors. 

Table 3.1 High/low solar activity years and assignment of 10 sets for tenfold cross validation [Pan et al., 2020]. 

Set index 1 2 3 4 5 6 7 8 9 10 

High 

(F10.7>100 sfu) 
1999 2002 2014 2001 2000 2015 2003 2004 2013 2012 

Low 

(F10.7≤100 sfu) 
2005 2018 2009 2006 2008 2011 2017 2016 2010 2007 

 

3.3 Results 

3.3.1 Random Mask Results – Influence of Training Data and Poisson Blending 

Figure 3.4 shows the completed TEC maps of DCGAN without PB using 2-year training 

data (2010–2011) under different solar activities shown in Figure 3.1 and different random masks 

shown in Figure 3.2. DCGAN fills the TEC data gaps well in some places, for example, the high 

TEC value region in 2012 maps (the top row). In addition, the larger portion of missing data, the 

worse the completed map. However, the completed maps suffer the mosaic artifacts, for example, 

the middle row for high solar activity in 2015, as the TEC values generated from DCGAN in the 

missing data region have some baseline shift from the surrounding region. One possible reason for 

the worse performance in 2015 than in 2012 is that the training data (2010–2011) contain most 

low solar activity maps, thus leading to a trained model lack of generalization of high solar 

activities. 

As we increase the training data from 2 years to about 12 years, the completed TEC maps 

are notably improved as shown in Figure 3.4b. Since one solar cycle is about 11 years, the training 

data including all the cases of TEC maps such as high solar activity years (with more large 
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geospace storms and F10.7 > 100 sfu) and low solar activity years (F10.7 ≤ 100 sfu) lead to a 

much-improved completion performance as shown in comparison of Figure 3.4(b&a). Similarly, 

the completed maps with less missing data and smaller gaps are better than those with more 

missing data and larger gaps. Nevertheless, the mosaic-looking noises still exist in the completed 

TEC maps. The mosaic artifacts can be seen in Figure 3.4(a&b), where unrealistic changes of TEC 

values are obvious in the missing data region. These artifacts likely generate abnormal disturbances 

if feeding into global circulation models (GCMs), which may affect space weather forecasts 

depending on the specific method used for data assimilation. However, the detailed quantitative 

investigation is out of the scope of this work and will be conducted in our future work. 

With postprocessing of PB, the mosaic-looking artifacts are effectively removed as shown 

in Figure 3.4c. The completed TEC maps reassemble the original IGS TEC map under all 

conditions, which demonstrates the superior image completion performance of DCGAN with large 

training data and PB. 
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(a) 2-year training data without Poisson blending 
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(b) 12-year training data without Poisson blending 



 39 

 

(c) 12-year training data with Poisson blending 

Figure 3.4 The completed TEC maps from DCGAN without and with Poisson blending. The 2-year training data (a, 
2010-2011) compares with 12-year training data (b&c, 1998-2010). From top to bottom of each subplot: 2012-10-07 
08 UT, 2015-03-17 12 UT, and 2019-05-18 16 UT. And three different mask styles from left to right: (1) 15% missing 
data with 2 × 2 minimum gap size; (2) 40% missing data with 2 × 2 minimum gap size; 15% missing data with 4 × 4 
minimum gap size [Pan et al., 2020]. 

 

To quantitatively evaluate the performance of three completion procedures, the root mean 

squared error (RMSE) values are summarized in Figure 3.5. In general, more training data lead to 

smaller RMSE values (~50% decrease), that is, better recovered TEC values, and the additional 

PB further brings down RMSE values dramatically (more than 50% decrease). It is interesting to 
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note the abnormality that RMSE with 2-year training data in 2019 is slightly better than that with 

12-year training data. The possible reason is that the solar activities were low in 2010, 2011, and 

2019. DCGAN trained with 2-year data (2010–2011) works better to fill TEC maps with low solar 

activities in 2019. Nevertheless, the more general model trained with 12-year data (1998–2010) 

still yields low RMSE values in the low solar activity case (<0.73 TECu with PB). While the 2-

year model produces high RMSE in the medium (2012) and high (2015) solar activity years, the 

12-year model reduces these errors by half. This demonstrates the importance of training data on 

deep learning-based data completion. 
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Figure 3.5 Root mean squared error (RMSE) of the recovered TEC values compared to the original values from IGS-
TEC maps for randomly selected 360 maps in the year of 2012, 2015, and 2019. The unit is TECu. “2 yrs”: DCGAN 
training with 2-year data; “12 yrs”: DCGAN training with 12-year data; “2_0.15”: 15% missing data with 2 × 2 
minimum gap size; “2_0.4”: 40% missing data with 2 × 2 minimum gap size; “4_0.15”: 15% missing data with 4 ×  4 
minimum gap size; “PB”: Poisson blending [Pan et al., 2020]. 
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3.3.2 MIT Mask Results – Realistic Comparison with Two Other Completion Methods 

The original IGS TEC maps at 2000-07-14 14:00 UT, 2003-11-01 10:00 UT, and 2015-03-

17 12:00 UT are shown in the first row of Figure 3.6. The MIT-TEC mask shown in Figure 3.3 is 

applied to them, and TELEA, NS, and DCGAN-PB are utilized to fill the data gap to reconstruct 

the global map. As shown in Figure 3.6, DCGAN-PB outperforms the other two methods and 

produces the completed TEC maps closest to the original IGS-TEC maps, particularly notable in 

the high TEC value regions (hot colored areas). Quantitative results of RMSE are shown in Figure 

3.7. The average RMSE for TELEA and NS is about 7–9 TECu, while DCGAN-PB effectively 

suppresses the error to 3–4 TECu. The performance for the MIT mask (Figure 3.7) is worse than 

that for the random masks (Figure 3.5) because the MIT mask has much larger gaps and more 

missing data than the random masks, thus posing a harder completion task. To further look into 

the distributions of recovered TEC values from different completion methods, the recovered TEC 

values (𝑓�̃�) versus the original values (𝑓𝑖) are plotted out in Figure 3.8. The green line denotes the 

perfect recovery, that is, 𝑓�̃� = 𝑓𝑖. In general, all three methods produce the data points around this 

line, reflecting a decent recovery of missing TEC values. The plots of DCGAN-PB are less spread 

than those for the other two methods. After linear regression, the fitted lines using these points are 

drawn in red. The deviations from the green line (perfect recovery) are noticeable for TELEA and 

NS, while DCGAN-PB leads to almost overlapped red and green lines. One possible reason PB 

works well is that the IGS TEC maps are based on some sphere-harmonic functions and thus vary 

smoothly. Our proposed DCGAN-PB outperforms TELEA and NS in terms of both bias and 

variance of recovered TEC values. 
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Figure 3.6 Top: the original IGS TEC maps at 2000-07-14 14:00 UT, 2003-11-01 10:00 UT, and 2015-03-17 12:00 UT on 
(from left to right). The completed TEC maps (with MIT-TEC mask) from two conventional inpainting methods (TELEA 
and NS) and DCGAN-PB method are shown in the second, third, and bottom rows [Pan et al., 2020]. 
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Figure 3.7 RMSE of the recovered TEC values compared with the original IGS TEC maps from three different TEC map 
completion methods (TELEA, NS, and DCGAN-PB) for three high solar activity cases [Pan et al., 2020]. 
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Figure 3.8 The recovered TEC values (vertical) versus the original TEC values (horizontal) for TELEA, NS, and DCGAN-
PB methods [Pan et al., 2020]. 
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3.3.3 Ten-Fold Cross-Validation Results with MIT-TEC Mask 

The ten-fold cross-validation (CV) results are shown in Figure 3.9 and Figure 3.10. The 

former displays the RMSE separately for high (a) and low (b) solar activity years. Similar to results 

in Figure 3.7, DCGAN-PB leads to smaller RMSE values (less than 4.04 TECu for high solar 

activity years and about two TECu or less for low solar activity years) than TELEA and NS in all 

low and high solar activity years. The fluctuation of RMSE values for DCGAN-PB is remarkably 

smaller than those from TELEA and NS as well. The statistical values (mean ± standard deviation 

[SD]) of RMSE from 10 sets for TELEA, NS, and DCGAN-PB are 7.21 ± 1.49 TECu, 6.69 ±

1.49 TECu, and 3.16 ± 0.74 TECu for high solar activity years and 3.60 ± 0.91 TECu, 3.11 ±

0.92 TECu, and 1.65 ± 0.32 TECu for low solar activity years, respectively. DCGAN-PB reduces 

the average RMSE by about 50% and the variation by more than 50%. Figure 3.10 shows the BA 

plots of all the test cases of cross-validation for TELEA, NS, and DCGAN-PB. The mean 

difference is −0.41 TECu for TELEA, 0.62 TECu for NS, and −0.31 TECu for DCGAN-PB. The 

95% confidence interval (±1.96 SD) is [−11.79, 10.97] TECu for TELEA, [−9.79, 11.03] TECu 

for NS, and [−5.32, 4.71] TECu for DCGAN-PB. DCGAN-PB has the least mean difference of 

−0.31 TECu (about 25% improvement over TELEA) and the least confidence interval of 10 (more 

than 50% reduction compared to TELEA and NS). Note that the large differences of TELEA and 

NS are caused by the edge pixels as shown in Figure 3.6. If we removed these edge pixels, the 95% 

intervals are [−9.38, 7.60] TECu for TELEA, [−7.24, 7.58] TECu for NS, and [−4.74, 4.31] TECu 

for DCGAN-PB, which still demonstrates the significant improvement of DCGAN-PB over the 

other two methods. The BA plots are consistent with RMSE results and demonstrate the superior 

completion performance of DCGAN-PB. The advantage of the proposed method lies on exploiting 

and extracting the fundamental features from large training dataset, while the traditional inpainting 
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methods are limited by information from one single image. Based on our cross-validation results, 

if the global average RMSE around three TECu (around 10% relative error) and 95% of filling 

values falling in ±5  TECu deviation can satisfy the particular application requirement, our 

DCGAN-PB model may provide sufficient accuracy. Nevertheless, the caveat is that this type of 

deep learning models is still at the early stage of development and needs more substantial 

investigation in order to be deployed for space weather forecast applications. 
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Figure 3.9 RMSE for 10 cross-validation sets by TELEA, NS, and DCGAN-PB methods for (a) high solar activity years 
and (b) low solar activity years [Pan et al., 2020]. 
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Figure 3.10 The BA plot of three different automatic TEC completion methods among all the test cases in the tenfold 
cross-validation: (a) TELEA; (b) NS; and (c) DCGAN-PB [Pan et al., 2020]. 
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3.3.4 Discussions 

Our initial Poisson blending results have some extreme abnormal values at the edges of the 

TEC maps. As mentioned by Mahmoud Afifi [Afifi and Hussain, 2015], the traditional Poisson 

blending technique suffers potential smudges if the blended region is at the edges of the image 

since there are no image values to use beyond the image domain. We have overcome this issue by 

assuming a cyclic pattern of the TEC maps in the longitude direction (so the left and right edges 

of TEC maps are essentially connected together). 

The test data are separated from the training data for more than 6 months, and the memory 

of ionosphere is not an issue since the memory of ionosphere is typically less than 1 month. For 

cross-validation results, there are test data within a month from the training data. The memory 

effect may influence the final result. We conducted the additional calculation of RMSE of 

DCGAN-PB by excluding test data in January and December to represent results without forward 

and backward memory effect. The BA plots for the high solar activity years and the low activity 

years show the good agreement between two sets of results with mean differences of −0.07 TECu 

for the high years and −0.01 TECu for the low years and all individual differences falling inside 

95% interval, except for one low solar year close to the interval edge. The memory effect seems 

to have negligible impact on our results. 

It is difficult to provide the theoretical uncertainties for deep learning models although the 

generative models hold the potential to reason the uncertainty, which is beyond the scope of this 

work. Nevertheless, the mean and SD of RMSE of filled TEC values of DCGAN-PB from the 

cross-validation experiment are 3.16 ± 0.74  TECu and 1.65 ± 0.32  TECu, for the high solar 

activity year and the low solar activity year, respectively. Based on additional Bland-Altman 
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analysis, the bias of DCGAN-PB is about −0.31 TECu, and the 95% of the differences are between 

−5.32 to 4.71 TECu, much improved over the other two automatic completion methods. 

In our current work, we used 2-hr temporal average and spatial resolution of 5.6°  in 

longitude and 2.8° in latitude for TEC maps. Therefore, the short-lived and small-scale features, 

such as polar cap patches, that are shorter than the temporal resolution and smaller than the spatial 

resolution in this work would be difficult to recover. Since our goal is to fill the gaps in the global 

large-scale TEC maps, the investigation of transient and small-scale phenomena is out of the scope 

of this study. Nevertheless, the deep learning methods, such as DCGAN, may be worth 

investigating for those phenomena using regional high temporal and spatial resolution TEC data. 

The 𝜆 value used in the current DCGAN-PB model (Equation 2.1) is 0.05. To investigate 

the influence of the context loss, we have chosen the 2-year model to test with different λ values 

(0.0005–0.9) since the mosaic artifacts are prominent in this case. The RMSE results for 2012-10-

07 08:00 UT and 2015-03-17 12:00 UT only change slightly with different 𝜆  values (usually 

around or less than 10%, except for 2012-10-07 with 4 × 4 minimum gap size). However, even 

for the largest differences on RMSE on 2012-10-07, the filled TEC maps using different 𝜆 values 

are hard to discern any visual difference of the mosaic artifacts. Therefore, the 𝜆  parameter 

balancing the contribution of the context loss and the prior loss works well in the tested range of 

0.0005–0.9. 

For DCGAN training, it is time consuming and needs parameter tuning for satisfactory 

results. To save time, in this work, we use a relatively small TEC matrix 64 by 64. The training 

time with 18-year TEC images with 200 epochs is about 1 day 4 hr using a single NVIDIA Titan 

V GPU card. The completion takes about 12 s without PB and 39 s with PB for 4,000 iterations. 
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Furthermore, the tuning of DCGAN structure and hyperparameters is empirical; thus, no optimal 

settings are guaranteed. We tried different learning rates and found that the learning rate of 0.00002 

yielded an expected trend of training losses of three models (2, 12, and 18 years). The 2-year model 

converges quickly and has a dip at 100 epochs. Thus, we used 95 epochs for this model. For the 

12- and 18-year models, although the training losses move in the right direction, it seems that the 

fluctuation of each batch update is much larger than the 2-year model and more epochs than 100 

are needed to further improve the training performance. Therefore, 200 epochs are used in this 

work for the 12- and 18-year model training. We also investigated the errors (RMSE) versus epochs 

for the 2-year model. The test error follows the trend of the training error with slight larger values. 

A slight upward trend at the end of the test error curve was observed, which indicates the over-

training might start to occur. The optimal choice of the learning rate and the number of epochs 

along with other hyperparameters are worth thorough investigation in future studies. 

In this work, we focused on the impact of the training size on TEC map completion 

performance. Our results indicated that the larger training data size, the better the learning 

performance for the current network structure. We also empirically found that the learning rate of 

0.00002 and the λ value of 0.05 yielded a good completion performance for the proposed DCGAN-

PB model. Since the model training is very time consuming, the hyperparameter tuning in this 

work is coarse and may not be optimal. The optimization of the network architecture and 

hyperparameters may be addressed by the new techniques, such as AutoGAN to dissect GAN into 

modules (e.g., conv layers and pooling layers) and to test the performance with different 

combinations and complexities in a smaller scale [Gong et al., 2019; Salimans et al., 2018]. It 

would be our future work to apply these new techniques to optimize our DCGAN model. 
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Nevertheless, our results demonstrate promising performance of the current model that is superior 

to the traditional methods. 

The success of the learning methods is built on the assumption that the training and test 

data are independently sampled from the identical distribution. However, the TEC value 

distribution in each map is highly dependent on the solar and geomagnetic conditions. In general, 

the larger the training set is, the greater the chance the training sample would be from the same 

distribution as the test sample. Indeed, for the three test TEC maps (2012-10-07 08:00 for medium 

solar activity, 2015-03-17 12:00 UT for high solar activity, and 2019-05-18 16:00 UT for weak 

solar activity), we conducted the Kolmogorov-Smirnov (KS) two-sample test between them and 

the training maps. For 2-year training data, the null hypothesis cannot be rejected in 6, 0, and 0 

cases for three test maps (i.e., the cases with the same distribution between the training map and 

the test map), respectively, while for 12-year training data, the numbers increase to 11, 1, and 2. If 

the Bonferroni correction was applied, the numbers for the KS null hypothesis are 180, 9, and 0 

for 2-year training data and 933, 221, and 295 for 12-year training data. These results demonstrate 

that the larger the training dataset is, the greater chance it could match the distribution of the test 

data. 

The comparison with simulation results based on first-principle physics models, such as 

GITM [Ridley et al., 2006] and TIE-GCM [Richmond et al., 1992], would be worth future 

investigation although the simulation results from these models usually have differences from the 

ground truth. Such a simulation and comparison effort are beyond the scope of this work. However, 

the physics-based models may be combined with deep learning to improve the task-based 

performance. For example, the physics-guided neural networks (PGNNs) add the output of a 

physics model of temperature and water density/depth relationship as an input in addition to 
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common environmental parameters for lake temperature prediction [Daw et al., 2022]. PGNN with 

prior physics knowledge showed better generalization than neural networks alone. Along this 

direction, the proposed deep learning framework may be improved by adding physical constraints 

(in Equation 1) for better completion performance. 

DCGAN-PB along with our previous work R-DCGAN [Chen et al., 2019] provides an 

automatic option for the completion of TEC maps through deep learning of the existing filled TEC 

maps. The filled TEC maps can not only provide references and inputs for physics models for 

space weather prediction applications, but also be used to study traveling ionosphere disturbances 

(TIDs) during the geomagnetic events. The comparison of deep learning-based methods and first-

principle physics models will strongly improve our understanding and prediction of ionospheric 

disturbance. Furthermore, the developed deep learning tools can greatly expedite the filling 

process for new TEC observations, which is important to space weather forecast as the timely 

output of the complete maps is needed for (nearly) real-time applications in GPS and high-

frequency (HF) communications. However, the caution must be taken to avoid the artifacts for 

learning-based methods, such as mosaic artifacts introduced by DCGAN. If these artifacts affect 

space weather forecasts to an unacceptable level, the techniques to remove these artifacts, such as 

Poisson blending in DCGAN-PB, have to be applied. 

DCGAN-PB has a simpler network structure than R-DCGAN [Chen et al., 2019], where 

the former is to mimic IGS TEC completion process and the latter is to fill MIT-TEC maps using 

IGS TEC as a reference. Although there is a slight difference on two models' purposes, both of 

them can be used to fill TEC maps. A thorough comparison is worth investigating in near future. 

If the similar performance is achieved by two models, the simpler model would be preferred since 
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the runtime is shorter and the tunable parameters are fewer that lead to a fast and robust 

implementation. 
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4 TEC Map Completion through a Deep Learning Model: SNP-GAN 

4.1 Introduction 

Total electron content (TEC) is the quantitative measurement of column electron content 

in the ionosphere. The study of TEC is important for various applications in space weather, such 

as identification of the geospace storm effect on plasma density gradients, traveling ionospheric 

disturbances (TIDs), and etc. [AJ Coster et al., 2003; Lyons et al., 2019; Nishimura et al., 2020; 

Tsugawa et al., 2007; S-R Zhang et al., 2019]. The measurement of TEC is done using Global 

Positioning System (GPS) [Makela et al., 2000]. Meanwhile, a statistical interpolation method, 

Kriging (as known as Gaussian process regression), was used in the Wide Area Augmentation 

System (WAAS) to estimate the vertical delay at each ionospheric grid point [Sparks et al., 2010]. 

There are two databases providing global TEC data. The Massachusetts Institute of Technology 

(MIT) computes GPS receiver biases, and has been collecting and processing TEC observations 

(MIT-TEC) with high spatial and temporal resolutions since 1998 from over 6,000 observations 

all over the world [Vierinen et al., 2016]. Due to the limited coverage of receiver stations, which 

communicate with satellites to measure the TEC data [Mannucci et al., 1998], it presents the raw 

incompleteness of MIT-TEC maps which curb the studies over the ocean region. On the other hand, 

the International Global Navigation Satellite System Service (IGS) uses TEC data over 500 

observations and complicated data processing methods to fill the data gaps, largely on the ocean 

part, to obtain complete global IGS-TEC maps. It involves large amount of manual efforts in the 

processing and communications between IGS Ionosphere Associate Analysis Centers [M. 

Hernández-Pajares et al., 2009]. Due to its small number of receivers and smoothing processes, 

mesoscale (100–1,000 km) structures are often lost in complete IGS-TEC maps. An automatic data 
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filling method for the raw MIT-TEC maps is desired to provide another useful source of complete 

TEC maps in addition to IGS-TEC. 

Since the TEC maps can be treated as 2D images, the recent advance in the image 

inpainting using deep learning methods can be exploited to fill missing data in the raw TEC maps. 

Conventionally, the image inpainting methods aim to utilize the relationship among pixels in a 

single image or a limited available set of images in hand [Barnes et al., 2009; Bertalmio et al., 

2001; Telea, 2004]. One issue of these conventional solutions is the limitation on available data to 

infer the missing part. Usually, they rely on the rule that the closer pixels have stronger relationship 

than those far apart. However, the performance deteriorates greatly for the data gaps that are large 

and irregular [Bertalmio et al., 2001; Telea, 2004]. Image completion based on Generative 

Adversarial Networks (GANs) [I J Goodfellow et al., 2014] and deep convolutional GAN 

(DCGAN) [Radford et al., 2015] has achieved impressive performance, for example, in human 

face reconstruction [Brandon, 2016]. It is worth mentioning that the generator in DCGAN is 

trained to generate images that are similar to real ones from a randomly initialized vector, and the 

incomplete input image only provides the context ground truth for the final iterative optimization 

for completion. Another issue with image inpainting is how to deal with the irregular shape of the 

missing data. Among several methods addressing this issue, partial convolutions (PConv) [G Liu 

et al., 2018] masked and renormalized the convolution to be conditioned on only valid pixels. An 

automatic mechanism was included to update the mask for the next layer as part of the forward 

pass. PConv was further improved by learnable bidirectional (forward and reverse) attention maps, 

where the latter allowed the decoder of U-net to concentrate on filling missing data in the irregular 

gap [Xie et al., 2019]. The spectrally normalized patch-based GAN (SNP-GAN) [Yu et al., 2019] 

generalizes partial convolution through gated convolution. Since global and local GANs are not 
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applicable to irregular gaps, a patch-based GAN loss was proposed by applying spectrally 

normalized discriminator on dense image patches so that a multiple-stage architecture including a 

coarse network and a refinement network [Miyato et al., 2018] could be utilized. Different from 

the previous DCGAN models, these deep GAN models dealing with irregular image gaps can 

achieve the end-to-end image completion using the incomplete image and its corresponding gap 

mask as the model input. Moreover, a contextual attention module used in the generator, which 

borrows the available background information, can lead to better inpainting performance. 

Deep learning-based image inpainting has been adapted to handle the issue of incomplete 

TEC map or to improve the global TEC prediction ability recently. With an additional reference 

discriminator using IGS-TEC maps, R-DCGAN shows good completion performance for MIT-

TEC maps with data gaps [Chen et al., 2019]. In another work, Poisson blending following 

DCGAN (DCGAN-PB) has achieved excellent inpainting results of IGS-TEC maps for both small 

and dispersive gaps and large and continuous gaps [Pan et al., 2020]. The pix2pix image 

translation model [Isola et al., 2017] was adopted to develop a DeepIRI model [Ji et al., 2020] to 

obtain improved International Reference Ionosphere (IRI) TEC maps. Using 11-year IGS-TEC 

training data, a U-net generator of DeepIRI can greatly improve the global TEC maps generated 

by IRI, particularly ionospheric peak structures. Recently, a method incorporating the temporal 

information in TEC map completion has been proposed [Sun et al., 2022]. The so-called Video 

Imputation with SoftImpute, Temporal smoothing and Auxiliary data (VISTA) method was built 

on the conventional matrix completion algorithms with an additional temporal term to enforce the 

temporal consistence and/or an auxiliary data constraint to enforce the similarity to interpolation 

of spherical harmonic functions. VISTA was shown to better preserve the TEC structures than the 

conventional matrix completion methods based on sparsity and low-rank assumptions. 
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DCGAN-based completion methods have been very successful for the TEC maps 

completion. However, since they aim to build a model (generator) to generate TEC maps from the 

initial random vector without referring the incomplete TEC map context, the generated map has to 

be transformed to the closest encoding in the latent image manifold using the context and prior 

losses based on the incomplete map [Yeh et al., 2017]. This transform not only takes substantial 

time due to iterative optimization, but also leads to additional uncertainties of final filled maps. In 

this work, we adapt SNP-GAN for TEC map completion to address the issues with DCGAN-based 

completion methods. The comparison with DCGAN-PB through cross-validation shows that SNP-

GAN can achieve better quantitative completion results and faster completion than DCGAN-PB. 

Furthermore, we conduct case studies of geomagnetic storm events in March 2013 and February 

2016 using the trained SNP-GAN model to reconstruct the MIT-TEC maps, which shed light on 

the potential of SNP-GAN for TEC map completion to study large and mesoscale TEC structures. 

It is worth noting that since IGS-TEC is one of widely used community sources for complete TEC 

maps, we used it as the training data for deep learning models that can fill the incomplete MIT-

TEC maps. These deep learning models learn the data filling processes from IGS-TEC and apply 

them to fill the missing data in MIT-TEC, while keeping the original available data intact. 

Therefore, no IGS-TEC data were used as ground truth during MIT-TEC map completion. 

 

4.2 Data and Experiments 

All the data sets used in this study are MIT-TEC (http://cedar.openmadrigal.org/) and IGS-

TEC (https://cdaweb.gsfc.nasa.gov/pub/data/gps/). The raw MIT-TEC maps have a spatial 

resolution of 1° in longitude by 1° in latitude with a temporal resolution of 5-min, and the IGS-

TEC maps have the resolution of 5°  in longitude by 2.5°  in latitude with an optional temporal 
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resolution of 2-hr, 1-hr, or 15-min. A 2D interpolation was applied to the raw IGS-TEC maps with 

2-hr cadence to reshape them into 64 × 64 images for training of low-resolution deep learning 

models and with 15-min cadence to reshape them into 128 × 128 images for training of high-

resolution deep learning models. The MIT-TEC maps were re-binned (to the mean) to a spatial 

resolution matching that of trained models, unless otherwise stated. As the trained models (such 

as the SNP-GAN model architecture in Figure 2.1) do not take the temporal relation into 

consideration, the time cadence of MIT-TEC was re-binned into 10 min for quantitative calculation 

and kept 5 min for qualitative map viewing. We focused on the low-resolution models in Results 

and provided some preliminary results of the high-resolution models in Discussion. The IGS-TEC 

maps from 1999 to 2018 were used for training of different GAN-based inpainting models, while 

the test was conducted on IGS-TEC maps excluded from the training data set for the cross-

validation experiment or on MIT-TEC maps for the case studies. For quantitative evaluation, we 

used the MIT-TEC masks in longitude (equivalent to local time, LT) by latitude (MIT-TEC LT 

masks) (see Figure 4.1 for example) for cross-validation of IGS-TEC maps and a random brush 

mask for the case studies of MIT-TEC maps. The root mean squared error (RMSE) of the IGS-

TEC cross-validation (CV) test sets and the MIT-TEC test sets serves as the quantitative criterion 

to evaluate the reconstruction performance. 
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Figure 4.1 The masked IGS-TEC maps (5.6° × 2.8°) at 00:00, 12:00, and 18:00 UT on 2016-02-01 in local time versus 
latitude. The blank regions in each map represent the MIT-TEC LT masks [Pan et al., 2021]. 

 

4.2.1 Cross-Validation (CV) on IGS-TEC Maps 

Similar to our previous work [Pan et al., 2020], we use a 10-fold cross-validation with 

pairs of low and high solar activity years (low solar activity: F10.7≤100 sfu; high solar activity: 

F10.7 >100 sfu) to systematically evaluate the inpainting performance for different models. 

Specifically, the IGS-TEC data from 18 out of 20 years (i.e., 90% of all data) were randomly 

selected for training, and the rest two (i.e., 10% of all data), one low solar activity year and one 

high solar activity year, were used for test. In the training data, 80% were used for training and 20% 

were used for validation. The years of the 10-fold CV test sets are shown in Table 3.1. Fifty TEC 

maps were randomly selected for each test year to calculate the RMSE values. The MIT-TEC LT 

masks were used (as shown in Figure 4.1) to artificially make incomplete TEC maps from the 

complete IGS-TEC maps for the calculation of RMSE. More details about the cross-validation 

settings and other styled mask experiments can be found in [Pan et al., 2020]. 

The SNP-GAN model was trained using the following parameters: an effective batch size 

(EBS) of 16 × 8 (the number of batches × the number of GPU cores) and a fixed learning rate of 
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0.0001. The EBS and learning rate for DCGAN-PB were 64 × 1 and 0.00002, respectively. Both 

models were first run 2000 epochs on a validation set to determine the optimal number of epochs. 

DCGAN-PB reached the best RMSE values around 200 epochs, while SNP-GAN did at 2,000 

epochs. Since SNP-GAN has a more complicated architecture than DCGAN-PB, it took more time 

to be well trained. It is worth mentioning that the arrangement of TEC map in local time by latitude 

for training leads to better performance than that in longitude by latitude. Although longitude and 

local time have a one-to-one correspondence, for any given UT, the TEC distribution arranged in 

local time shows a more consistent pattern. For example, the TEC peaks are almost always in the 

center of the map and the low TEC is on each side of the map throughout different UTs. If longitude 

is used, this pattern gradually shifts as UT advances. This spatial consistency with local time offers 

advantage to the GAN model to learn the underlying data distribution more effectively. This is 

similar to human face image, which always has the nose in the center. Thus, the position of this 

structure provides a more or less consistent and stable TEC pattern as UT progresses for effective 

inpainting network training. The deep learning models in this work were all trained in local time 

by latitude, unless otherwise stated. 

 

4.2.2 Case Studies on Two Storm Events: March 2013 and February 2016 

In order to study the performance of SNP-GAN during geomagnetic storms, two storm 

events (2013-03-16 to 2013-03-18 namely “2013 storm,” and 2016-01-30 to 2016-02-04, namely 

“2016 storm”) were selected. The MIT-TEC maps during these two storm events were binned in 

time for a temporal resolution of 10 min, which leads to a total of 216 TEC maps for calculation 

of RMSE. The models trained on 18 years' IGS-TEC maps from 1999 to 2018 excluding 2013 and 

2016 (corresponding to test sets, “cv_9” and “cv_8” shown in Table 3.1, respectively) were used 
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in the case studies. Not only were the test data (MIT-TEC) different from the training data (IGS-

TEC), but also the time periods of all the test data were excluded from the training data. Therefore, 

the training process was not contaminated by any information of the test data. 

To quantitatively evaluate the performance of the SNP-GAN model, we conducted two 

experiments. The first experiment is to reconstruct the IGS-TEC maps that were intentionally 

masked with the MIT-TEC LT masks as shown in Figure 4.1. The second experiment is to 

reconstruct the MIT-TEC maps. For MIT-TEC maps, there are no complete maps available. In 

order to quantitatively evaluate the data completion performance of different methods on MIT-

TEC, we intentionally removed some available data points from MIT-TEC maps to save them for 

the calculation of RMSE. 10% and 20% random brush masks take away approximately 10% and 

20% data from MIT-TEC maps, which provide a sufficient number of missing data points with the 

pattern mimicking the large gaps in the original MIT-TEC maps for evaluation. 

The trained DCGAN-PB and SNP-GAN were used to reconstruct the MIT-TEC maps (at 

the spatial resolution of 5.625° in longitude by 2.8125° in latitude and the temporal resolution of 

5 min) from 2016-01-30 to 2016-02-04. Note that the finest temporal resolution in IGS-TEC data 

is 15 min, which is lower than the 5-min temporal resolution of the MIT-TEC data. The goal of 

this part of study is to investigate whether the deep learning-based methods can recover both the 

global maps and the localized mesoscale structures from MIT-TEC data. 
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4.3 Results 

4.3.1 Cross-Validation on IGS-TEC Maps 

The RMSE values averaged over 50 randomly selected TEC maps of each CV test year are 

plotted in Figure 4.2 ([a] for high solar activity years and [b] for low solar activity years). For each 

test year, SNP-GAN achieves lower RMSE values than DCGAN-PB, except for the ninth CV test 

set of the low solar activity years. The average RMSE of SNP-GAN is 1.99 TECU for high solar 

activity years and 1.09 TECU for low solar activity years. To evaluate the relative performance 

between the two models, we introduce “relative RMSE” (R-RMSE) where the RMSE value is 

divided by the average TEC value of all ground truth pixels in the masked regions. The R-RMSEs 

are 8.06% and 9.91% for SNP-GAN, respectively. The average RMSE of DCGAN-PB are 3.16 

TECU for high solar activity years and 1.65 TECU for low solar activity years, and the 

corresponding R-RMSEs are 12.64% and 15.03%, respectively. RMSE shows that SNP-GAN has 

an improvement of 37% for high solar activity years and 34% for low solar activity years compared 

to DCGAN-PB (with the same improvements of R-RMSE). From the two-sample t-test between 

RMSEs in the 10-fold cross-validation of two models, we get a p-value of 0.000478 for high solar 

activity years and a p-value of 0.000187 for low solar activity years, which indicates that SNP-

GAN outperforms DCGAN-PB in reducing RMSE values with statistically significance. 
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Figure 4.2 Average RMSE (TECU) of each CV test set of high solar activity years in 10-fold cross-validation of IGS-TEC 
data for (a) high solar activity years and (b) low solar activity years. (DCGAN-PB: black squares with dashed lines; 
SNP-GAN: green dots with solid lines) [Pan et al., 2021]. 
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4.3.2 Case Studies 

The interplanetary magnetic field (IMF) provides important information of the 

geomagnetic activity level and the southward IMF 𝐵𝑧 could trigger magnetic reconnection, and 

thus ionospheric storms. We plotted the IMF during the storm times in 2013 and 2016 in Figure 

4.3. The moments of TEC maps in the following figures are marked as the vertical green lines in 

Figure 4.3: 2013-03-17 10:00 UT and 2016-01-30 00:00 UT for the IGS-TEC map completions 

using the MIT-TEC LT mask in Figure 4.4, respectively; 2013-03-17 00:00 UT and 2016-02-03 

00:00 UT for the MIT-TEC completions using the random brush masks in Figure 4.5, respectively; 

2016-01-31 16:07:30 UT for the global MIT-TEC TEC peak structure recovery in Figure 4.6; and 

2016-02-03 01:37:30 UT for the mesoscale structure recovery in Figure 4.7. Note that the test data 

set does cover the cases from quiet time to strong storms. While Figure 4.3 only shows the IMF 

conditions, the IMF 𝐵𝑧 is strongly related to Kp index. During 2013 storm event, the maximum 

Kp is larger than 6, which indicates an intense storm. While in 2016 event, the maximum Kp is 

between 3-6, which means a moderate storm. We select several time points during these two events 

shown in Figure 4.3, which reflect both storms (large negative 𝐵𝑧 or high Kp index) and the relative 

quiet time (near zero 𝐵𝑧 or low Kp index). 
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Figure 4.3 The IMF conditions of (a) 2013 storm and (b) 2016 storm. The green vertical lines represent time points for 
the following figures: 2013-03-17 10:00 UT for Figure 4.4a, 2016-01-30 00:00 UT for Figure 4.4b, 00:00 UT on 2013-
03-17 for Figure 4.5a, 2016-02-03 00:00 UT for Figure 4.5b, 2016-01-31 16:07:30 UT for Figure 4.6, and 2016-02-03 
01:37:30 UT for Figure 4.7 [Pan et al., 2021]. 

 

4.3.2.1 Reconstruction of Masked IGS-TEC Maps 

Two representative inpainting results are shown in Figure 4.4a for 2013 storm (at 2013-03-

17 10:00 UT) and Figure 4.4b for 2016 storm (during a quiet period at 2016-01-30 00:00 UT). 

SNP-GAN can recover the TEC maps much better than DCGAN-PB, especially for the high TEC 

values in Figure 4.4a. If we define regions with TEC values greater than 50 TECU to be “TEC 

peaks,” which is near the Equatorial Ionization Anomaly (EIA) region, the DCGAN-PB result 

shows superfluous TEC peak structures in the LT interval from 23 LT to 0 LT, while the SNP-GAN 

result preserves the TEC peak structures that closely resemble the original maps. The quantitative 

results are shown in Table 4.1 IGS-TEC completion. SNP-GAN achieves much smaller RMSE 
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values than DCGAN-PB. The improvement is about 55.6% and 56.7% for 2013 storm and 2016 

storm, respectively. 

Table 4.1 RMSE Results (TECU) for 2013 Storm and 2016 Storm Using DCGAN-PB and SNP-GAN for IGS-TEC Completion 
With the MIT-TEC LT Mask and MIT-TEC Completion With Random Brush Masks 10% and 20% [Pan et al., 2021]. 

Data and mask type Event DCGAN-PB SNP-GAN 

IGS-TEC completion with the MIT-TEC LT 

masks 

2013 storm 4.8061 2.1342 

2016 storm 3.2414 1.4020 

MIT-TEC completion with random brush 

masks 10% 

2013 storm 6.2374 6.0961 

2016 storm 3.7849 3.7312 

MIT-TEC completion with random brush 

masks 20% 

2013 storm 6.6980 6.0637 

2016 storm 3.8634 3.8046 

 

4.3.2.2 Reconstruction of MIT-TEC Maps 

The reconstructed MIT-TEC maps (with additional 10% and 20% random brush masks) at 

2013-03-17 00 UT are shown in Figure 4.4, where a peak TEC structure (>50 TECU) can be seen 

in the IGS-TEC map. The SNP-GAN inpainting results for both 10% and 20% random brush masks 

apparently recover the double-band TEC structure (>50 TECU), while the DCGAN-PB inpainting 

results show too much connection between two bands. Note that the 20% mask removed some 

peak pixels, which lead to the discontinuity of the southward peak around 18LT in both DCGAN-

PB and SNP-GAN results. This also leads to larger RMSE values for the result of the 20% mask 

than that of the 10% mask. The RMSE values of SNP-GAN in this case substantially outperforms 

that of DCGAN-PB. 

Another example at 2016-02-03 00UT is shown in Figure 4.5. The solar activity in this case 

is relatively low compared to the previous case (Figure 4.4), thus leading to a smaller area of high 

TEC values on the dayside. The masked ground pixels are mostly distributed in low and middle 

latitude regions, where two bright TEC spots are near the equator. Both DCGAN-PB and SNP-

GAN results look similar for the 20% brush mask case, which is also reflected by the similar 



 69 

RMSE performance. However, the 10% mask erased partially the two TEC bright spots, while the 

20% mask was on the regions with low TEC values. As a matter of fact, the average TECU of the 

masked pixels in the 10% mask is approximately twice as much as that of the 20% mask. 

Consequently, the RMSE values are worse for the 10% mask than the 20% mask. However, the 

deterioration is much smaller for SNP-GAN (RMSE ratio between the 10% mask and the 20% 

mask is 1.10) compared to DCGAN-PB (RMSE ratio between the 10% mask and the 20% mask 

is 1.76). SNP-GAN preserves more consistent completion performance than DCGAN-PB even if 

some high TEC values are missing. 

The average RMSE values through the whole storm time in 2013 and 2016 are shown in 

Table 4.1 for random brush masks 10% and 20% masks, respectively. As for 10% mask, the 

quantitative performance is similar between DCGAN-PB and SNP-GAN for both 2013 storm and 

2016 storm for 10% mask. As the masked pixels increased from 10% to 20% where more high 

TEC values were brushed out, the SNP-GAN reconstruction leads to reductions of 9.47% and 1.52% 

compared to DCGAN-PB for 2013 storm and 2016 storm, respectively. This demonstrates that 

SNP-GAN outperforms DCGAN-PB mainly on recovering the structures with high TEC values, 

while keeps a similar performance on smooth background TEC values. It is also noted that when 

the number of brushed out pixels increased from 10% to 20%, RMSE of SNP-GAN barely 

increased (indeed deceased slightly for 2013 storm) compared to DCGAN-PB, which 

demonstrates the consistent inpainting performance of SNP-GAN for different sizes of missing 

data gaps in general. 
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Figure 4.4 Reconstructed IGS-TEC maps at (a) 2013-03-17 10:00 UT and (b) 2016-01-30 00:00 UT using DCGAN-PB 
and SNP-GAN [Pan et al., 2021]. 
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(a) 2013-03-17 00 UT 

 

(b) 2016-02-03 00 UT 

Figure 4.5 Reconstructed MIT-TEC maps using DCGAN-PB and SNP-GAN with 10% and 20% random brush masks [Pan 
et al., 2021]. 
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4.3.2.3 Reconstruction of TEC Structures at Different Scales 

In addition to the global maps (local time v.s. latitude) in Figure 4.6, the polar maps were 

also provided from 50°N to the geographic north pole in Figure 4.7. 

 

Figure 4.6 Global TEC maps at 2016-01-31 16:07:30 UT. TEC peaks above the Atlantic ocean can be seen in all 
completed maps [Pan et al., 2021]. 

 

The reconstruction results at 2016-01-31 16:07:30 UT under southward IMF condition are 

shown in Figure 4.6. As can be seen, the global IGS-TEC map shows a clear TEC peak above the 

Atlantic Ocean area. Due to the limited receiver stations, the data coverage over the ocean is very 
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sparse and the peak is missing in the MIT-TEC map. However, both DCGAN-PB and SNP-GAN 

successfully reconstruct the large-scale structure which fell into the data gap of the MIT-TEC map. 

Both DCGAN-PB and SNP-GAN reconstruct the TEC structures on the Atlantic Ocean. 

 

(a) Low-resolution 

 

(b) Low-resolution and high-resolution 

Figure 4.7 North polar TEC maps at 2016-02-03 01:37:30 UT. A cusp-like structure is visible in: (a) raw MIT-TEC, 
DCGAN-PB map, SNP-GAN map; (b) SNP-GAN map low-resolution, and high-resolution [Pan et al., 2021]. 

 



 74 

Figure 4.7a shows the polar distribution of TEC at 2016-01-31 16:07:30 UT. A cusp-like 

structure is clearly visible west to Bering Strait (as circled) for TEC maps reconstructed by 

DCGAN-PB and SNP-GAN. As indicated by several isolated bright spots with high TEC values 

in the original (incomplete) MIT-TEC map, a TEC peak structure may exist. However, such a cusp-

like structure cannot be observed from the IGS-TEC map, which is likely due to the heavy 

smoothing used in the IGS-TEC processing methods. Both DCGAN-PB and SNP-GAN seem to 

be good models to combine both the complete IGS-TEC maps and the MIT-TEC raw data. On one 

hand, they learn the IGS-TEC data distribution for data filling. On the other hand, they constrain 

the data filling process to the MIT-TEC data input to avoid over-smoothing. Therefore, those bright 

spots in the original incomplete MIT-TEC map are not smeared by the deep learning inpainting 

models, which shows their great potential of identifying mesoscale structures. Furthermore, SNP-

GAN seems to be in a good balance that keeps both the global structures of the IGS-TEC map and 

the local structures of the MIT-TEC map. 

 

4.4 Discussion 

SNP-GAN outperforms DCGAN-PB by a large margin in the 10-fold cross-validation of 

masked IGS-TEC data, which demonstrated the strong end-to-end learning capability of SNP-

GAN. For MIT-TEC data, SNP-GAN is also more effective on recovering TEC structures with 

large TEC values than DCGAN-PB. DCGAN-PB seems to work well on smoothing background 

TEC values, largely due to the postprocessing of Poisson blending. However, we found that 

Poisson blending was not able to improve SNP-GAN inpainting performance, likely due to its end-

to-end inpainting training. The advantage of SNP-GAN is not only on the accuracy of 

reconstruction of missing TEC data, but also on saving the computation time of reconstruction. 
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While DCGAN-PB needs an iterative optimization to map the generated TEC map to the missing 

TEC data context, the “end-to-end” inpainting network architecture of SNP-GAN allows much 

more efficient inpainting. It takes approximately 4 days 7 hr for 2,000 epochs training of the 

DCGAN-PB model on one NVIDIA Tesla V100 GPU, while 3 days 3 hr for the same number of 

epochs of SNP-GAN training on 8X NVIDIA Tesla V100 GPUs. By averaging over 108 TEC maps 

used in the case studies (in 2013 and 2016), the SNP-GAN model takes approximately 1.6 s to 

load the trained model and one set of the input data (an incomplete TEC map and its mask) and 

about 0.74 s to complete a TEC map on one NVIDIA Tesla V100 GPU. For comparison, the 

DCGAN-PB model takes much longer time, 144 s, to complete a TEC map on the same GPU 

including the similar loading time and the iterative post optimization. That is more than 60 times 

(=144 s/2.34 s) speed up of the completion process for SNP-GAN over DCGAN-PB. Once the 

SNP-GAN model was trained, it only takes less than 1 s to complete one TEC map. Therefore, it 

is feasible to produce real-time global TEC maps using SNP-GAN given that the data from 

thousands of stations could be collected instantly. However, it is challenging to acquire the real-

time MIT-TEC data from over 6,000 receivers distributed worldwide. Usually, there is a 7-day 

delay for the availability of such a data. It is worth noting that there is a real-time TEC map project 

led by NOAA, which is confined to the North America region. 

Different from our previous work on IGS-TEC maps, the current work investigates 

innovatively on the training and test sets of different types. Although DCGAN-PB and SNP-GAN 

were trained on the IGS-TEC maps, the MIT-TEC maps were used as the test data since the 

complete MIT-TEC maps were not available. Both quantitative and qualitative results on the 

completion of MIT-TEC maps show the effectiveness of deep-learning based inpainting methods. 

The case studies further provide some insights of these models that can produce sensible complete 
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TEC maps from MIT-TEC data by keeping both global and local TEC features. From Figure 4.6, 

when the missing part is on the Atlantic ocean in the global view, both models produced decent 

qualitative looking by recovering the TEC peaks over the ocean part with finer TEC structures 

recovered by SNP-GAN. For the north polar view where the cusp-like structures occur, the deep-

learning models are capable of identifying these structures, whereas the IGS-TEC maps miss this 

critical information. 

In addition to “year-wise” split of data for training, we did extra experiments using “month-

wise” split as follows: training/validation data are 1999–2018 except 2016, where April to 

December except May are for training and May for validation. 2016-01-30 to 2016-02-04 are used 

for test (in order to compare with results using year-wise training in Table 4.1). First, we used the 

validation set to choose the best learning rate (LR) out of 1 × 10−3, 1 × 10−4, and 1 × 10−5. The 

LR of 1 × 10−4 yields the best validation performance, that is, smallest RMSE on the validate set. 

Then, we chose the model trained using this LR to test on the storm event period in 2016. The 

results are 4.5063 TECU, 3.7504 TECU, and 4.0017 TECU, respectively, for three cases in Table 

4.1 for 2016 storm. As can be seen, the year-wise SNP-GAN results are much better than the month-

wise results in the IGS-TEC completion. While the differences are small for the MIT-TEC 

completion in random brush masks, the year-wise SNP-GAN model still yield the least RMSE 

values. Although the RMSE values are close for two models, the visual inspection of completed 

TEC maps reveals that the year-wise model produces more consistent results than the month-wise 

model. Since the year-wise model includes the data containing both seasonal changes in a year and 

yearly changes in a solar cycle, it works better than the month-wise model, whose training data are 

lack of certain months. 
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To better utilize the high spatial resolution of MIT-TEC data, we interpolated the IGS-TEC 

maps to 128 × 128 maps with spatial resolution of 2.8125° in longitude by 1.40625° in latitude 

to train SNP-GAN. The trained high-resolution SNP-GAN model was then used to complete the 

MIT-TEC map at 2.8125° in longitude by 1.40625° in latitude. The high-resolution model result 

at 2016-01-31 16:07:30 UT is shown in Figure 4.7(b) along with the low-resolution model result 

(5.6125° in longitude by 2.8125° in latitude). Although the cusp-like structure can be seen in both 

low-resolution and high-resolution SNP-GAN models (circles in Figure 4.7(b)), the high-resolution 

SNP-GAN model produces a narrower and sharper cusp-like peak and better resolves the transition 

between different regions than the low-resolution model. Note that the training of high-resolution 

SNP-GAN is much more time consuming than the low-resolution one, with approximately 87 

hours for the former and 50 hours for the latter on 8X Nvidia V100 GPUs, respectively. Since the 

hyperparameters and the masks are not fully optimized in this study, some small abrupt TEC value 

changes can be observed in the completed TEC maps. Nevertheless, these preliminary results with 

high-resolution SNP-GAN demonstrate that although IGS-TEC maps have a limited spatial 

resolution, a SNP-GAN model trained on up-sampled IGS-TEC maps can still take advantage of 

the high-resolution MIT-TEC data to produce the complete maps with rich structures and smooth 

transition between different regions. 

To validate the existence of the cusp-like structure in Figure 4.7. In situ measurements by 

satellites may be utilized. However, we checked DMSP satellites orbits and could not find an 

overlap of the location. In order to approve the mesoscale structure is not artificial, we conducted 

some additional reconstructions with conventional image inpainting methods including linear 

interpolation, TELEA and NS (Pan et al., 2020) corresponding to Figure 4.7a (low-resolution) and 

Figure 4.7b (high-resolution). The results demonstrate that all methods yield the cusp-like structure. 
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The linear interpolation performs decently in the polar region, while TELEA and NS have an 

artificial spear-like structure to the north pole. In addition, TELEA suffers severe mosaic-like 

artifacts in the high-resolution map. SNP-GAN seems to produce a more appealing look of this 

structure. We also conducted a quantitative evaluation of linear interpolation for experiments in 

Table 4.1. The linear interpolation did a nice job for IGS-TEC maps, which are smooth, but were 

inferior to two deep learning models for MIT-TEC maps, which contain more subtle structures. 

The visual inspection of reconstructed maps also confirmed that the more subtle structures can be 

recovered better by the deep learning methods than linear interpolation. A quantitative comparison 

between TELEA/NS and the deep learning-based inpainting (DCGAN-PB) can be found in our 

previous work [Pan et al., 2020]. We also included videos of TEC maps reconstructed by SNP-

GAN that show the structure continuously evolves along the time for more than one hour instead 

of an abrupt change. All these provide supporting evidence that the structure is not an artificial 

structure due to the methodology, instead represents a real phenomenon. Certainly, more 

systematic validation of the mesoscale structure is needed. But it is out of the scope of this study, 

which focuses on introducing a new method for TEC map completion and its potential. In the 

future, we will select events during which the data coverage in the moon-midnight location time 

section is great. The correlation of the mesoscale structure from SNP-GAN with the satellite 

observations will then be examined in a comprehensive way covering various kinds of events in 

different seasons, which will be an excellent topic for future investigation. 

The confidence level of the filled TEC values is an important metric in order to adapt the 

proposed deep-learning completion methods. Since these models are highly nonlinear, the 

assumption of Gaussian distribution may not be a good approximation, thus leading to erroneous 

confidence levels. One empirical solution is to start with different random seeds for each missing 
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pixel and to run multiple training and completion. Therefore, an empirical distribution can be 

obtained to access the confidence level. However, such an investigation is substantial and out of 

the-scope of this work. 
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5 Neural Network Models for Ionospheric Electron Density Prediction: A Neural Architecture 

Search Study 

5.1 Introduction 

The incoherent scatter radar (ISR), located at Millstone Hill (42.6°N, 71.5°W, dip 71.6°) can 

provide direct measurements of ionospheric parameters, such as electron density (Ne), plasma 

temperature, and line of sight ion velocity. The altitudinal (range) variation of these parameters is 

measured continuously over time by the ISR. However, most traditional ISRs operate for campaign 

purposes but not on a daily basis. Figure 5.1 shows an example of Ne around 350 km at the 

Millstone Hill station in 2012, where a lot of data are missing. Therefore, a model that can fill the 

observational data gaps for these parameters under real solar/geomagnetic conditions would be 

desired for various space weather and ionospheric research purposes. 

 

Figure 5.1 The ISR records of Ne in the logarithmic scale around 350 km altitude in 2012. Horizontal axis: day of year 
(DOY); vertical axis: solar local time (SLT); the intensity represents logarithmic electron density (𝑙𝑜𝑔10𝑁𝑒), while the 
blank space represents missing records. Most of the region is in blank, indicating the irregularity of ISR’s operation. 
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Conventionally, the empirical models were developed to provide this information. For 

example, a global model, international reference ionosphere (IRI) D. Bilitza [2001] and IRI-2016 

[D. Bilitza et al., 2017], takes primarily ionosonde observations to generate 3D distributions of 

ionospheric parameters. The ISR ionospheric model (ISRIM) [Holt et al., 2002] has been built for 

multiple ISRs around the world developed initially for Millstone Hill ISR observations in the time 

and vertical domains [Holt et al., 2002]. Additional regional models beyond local vertical 

variations were also developed near Millstone Hill as well as in the North America longitudes. 

These statistical models took a binning and fitting approach to construct an empirical model in 

space and time [S R Zhang and Holt, 2007]. In each bin, the sequential least-squares fit is based 

on the normalized F10.7 and Ap3 indices, especially with the new introduced parameter F10.7p [L 

Liu et al., 2006; Richards et al., 1994] for better linear fitting [S R Zhang and Holt, 2007]. However, 

ISRIM was designed to provide ionospheric climatology where altitudinal and temporal variations 

are represented by smooth analytical models. The artificial neural network (ANN) models may be 

trained to better fill the data gaps or to predict these parameters.  

The neural network regression models have been developed for space weather research 

(see for example [S Wing et al., 2005]). A single hidden layer ANN with 18 neurons was used to 

derive ionospheric models in order to evaluate the long-term trends of Ne for the Defense 

Meteorological Satellite Program (DMSP) data [Y Cai et al., 2019; Yue et al., 2018]. The deep 

neural network (DNN) was used to model Ne to reconstruct the dynamics in the plasmasphere 

[Bortnik et al., 2016]. To offer the short-term variations, a three-dimensional dynamic electron 

density (DEN3D) model [X Chu et al., 2017; X N Chu et al., 2017] is also developed for 

plasmasphere using DNN with enhanced number of drivers of F10.7 and AL apart from SYM-H. 
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Several global ANN models have been proposed to predict ionospheric Ne. The ANN-based 

ionospheric models (ANNIM-2D and ANNIM-3D) have been proposed using a single-layer NN 

(SLNN) and more than 10-year data from the global positioning system radio occultation (GPS-

RO) missions [Gowtam et al., 2019; Sai Gowtam and Tulasi Ram, 2017; Tulasi Ram et al., 2018], 

such as CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery And Climate 

Experiment (GRACE), and Constellation Observing System for Meteorology, Ionosphere and 

Climate (COSMIC). The ground-based Digisonde Global Ionosphere Radio Observatory (GIRO) 

(with 864 spatial grids for ANNIM-3D) is also on the database list for ANN-based models. Another 

global model (with 864 sub-models) was also proposed using COSMIC data [Habarulema et al., 

2021], where each sub-model adapted a SLNN. A three-hidden-layer DNN was used for a global 

3D model (“ANN-TDD”) based on COSMIC, Fengyun-3C and Digisonde data [W Li et al., 2021]. 

The most recent work combined DNN with IRI (“ANN-IRI”) to improve Ne prediction compared 

to pure data-driven ANNs, particular in the lower ionosphere [D Yang and Fang, 2023]. These 

pioneer models reproduce the large-scale ionospheric phenomena and generally outperform the 

monthly-average model of IRI-2016 during the quiet time. However, firstly, the radio occultation  

measured Ne assumes the spherical symmetry which is the major source of errors when retrieving 

from vertical profiles [Lei et al., 2007]. Secondly, the aforementioned NN models usually have a 

worse prediction performance during the storm time than IRI-2016 with the STORM option on 

(specifically tailored for predictions during the storm time). One reason is that the storm events 

are comparatively taking up a smaller percentage in all the data used for the model training (i.e. 

not focusing on storm time behaviors), thus leading to inferior Ne prediction of these NN models 

during the storm time. Furthermore, these NN models usually chose the network structures and 

hyperparameters manually. Not only is the manual tuning tedious (e.g. thousands of experiments 
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were used to find a good 3-hidden-layer network structure [W Li et al., 2021]), but also these 

models could only achieve sub-optimal prediction performance.  

To address this issue with NN models for Ne prediction, we use an automatic optimization 

algorithm, so called neural architecture search (NAS) to optimize a single hidden layer NN (SLNN) 

and a deep NN (DNN) model and compare their performance. As our goal is to introduce NAS for 

optimization of NN models of Ne prediction, we used Millstone Hill ISR data at a fixed altitude 

(~350 km) from 2003 to 2018 since the data around this altitude are abundant and likely relevant 

to the low-earth-orbit (LEO) missions, such as CHAMP and the upcoming Geospace Dynamics 

Constellation (GDC, https://lws.larc.nasa.gov/gdc/) mission with an expected orbit altitude of 350-

400 km. 

 

5.2 Data and Experiments 

The Millstone ISR Ne data at the fixed altitude of ~350 km from 2003-2018 were used for 

training and test of different NN prediction models. The input variables are year, day number of 

year (DOY), solar local time (SLT, hour), daily F10.7 index (solar flux unit or sfu), and 3-hourly 

Ap index (Ap3), in which the cyclic sine and cosine are applied on DOY (DOYs and DOYc in 

Equation 5.1) and SLT (SLTs and SLTc in Equation 5.2) to reflect the periodic changes of these two 

input variables as suggested by previous studies [Athieno et al., 2017; Habarulema et al., 2021] as 

well as more stable training. All the input parameters in our models are normalized within the 

interval [0, 1] (as commonly done in NN modeling), which is different from the previous works 

[Athieno et al., 2017; Habarulema et al., 2021]. If not specifically elaborated, the output variable 

https://lws.larc.nasa.gov/gdc/
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Ne stands for the logarithmic electron density (i.e. Ne is equivalent to log10Ne, particularly for the 

numerical values) in the following sections. 

𝐷𝑂𝑌𝑠 = [sin(2𝜋 ×
𝐷𝑂𝑌

365
) + 1]/2, 𝐷𝑂𝑌𝑐 = [𝑐𝑜𝑠(2𝜋 ×

𝐷𝑂𝑌

365
) + 1]/2 5.1 

𝑆𝐿𝑇𝑠 = [sin (2𝜋 ×
𝑆𝐿𝑇

24
) + 1] /2, 𝑆𝐿𝑇𝑐 = [𝑐𝑜𝑠(2𝜋 ×

𝑆𝐿𝑇

24
) + 1]/2 5.2 

 

Table 5.1 Data setting and the conditions to clean ISR data. The ISR data has the greatest number of observations 
near height of 350km, which indicates the data availability is of our major consideration. The filters on two F10.7 
and Ap3 would rule out high intensity geophysical events. 

Parameter Valid Range  

Years  

Training 
2003 to 2018 except the 

val&test sets 

Validation [2010, 2015] 

Test [2007, 2012] 

F10.7 ≤ 300 sfu 

Ap3 ≤ 80 

Altitude ~350 km 

𝑵𝒆 [log10(5 × 109) , log10(3 × 1012)] el/m^3 

 

A total of 16 years of ISR data from 2003 to 2018 were used. We calculated the annual 

F10.7 average and used a threshold 90 solar flux units (sfu) to divide 16 years into high solar 

activity (HSA) and low solar activity (LSA) years. The validation and test sets were chosen as a 

pair of HSA year (2015 for validation and 2012 for test) and LSA year (2010 for validation and 

2007 for test) to have a similar data distribution to the training data. Year 2010 and 2015 were 

selected as validation set, while year 2007 and 2012 were reserved as test set. Remaining 12 years 

of data were used for training. We first cleaned the ISR data following the conditions in Table 5.1. 
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Specifically, the data corresponding to high solar activity and intense earth magnetic conditions 

(with F10.7 over 300 sfu and Ap3 greater than 80 units), which take about only 2% of whole 

dataset, were discarded following the previous work [Y Cai et al., 2019]. The Ne values were also 

confined to the range of [5 × 109 , 3 × 1012 ] el/m33. Furthermore, the noisy data that show 

isolated peaks/troughs or irregular time intervals in daily patterns were discarded. Finally, though 

the most frequent ISR observation cadence is 4-minute, the remaining data were binned to a one-

hour interval. One hour cadence was chosen to balance short-term variability in data and temporal 

resolution of the model. We also assured that the training, validation, and test sets followed the 

similar distribution of that of the overall Ne. After all these preprocessing of data, the 

training/validation/test set include 8,052/1,461/1,970 data records, respectively.  

We used the mean absolute error (MAE), root mean squared error (RMSE), and relative 

error (RE) of the test data as the quantitative measures for the prediction performance. The Bland-

Altman plots were used to interrogate the agreement between model output and ground truth Ne. 

We also quantitatively compared the predicted annual and day-to-day variations for all models 

supplemented by rankings of a daily variation prediction. 

 

5.3 Results 

In this section, the best network structure for the NAS models and the search for the best 

learning rates for all the models are presented first. Then, the prediction performance is evaluated 

statistically using MAE, RMSE, RE, and Bland-Altman plot. Next, we compare the NN models 

with an empirical model in a climatological study. Finally, we analyze the prediction performance 
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in a resolved temporal scale. The day-to-day electron density pattern prediction is shown for 

different models with a ranking study. 

5.3.1 Determination of Optimal Number of Epochs through Validation Loss Dips 

In Table 5.2, the number of hidden layers and the number of neurons in each layer are shown. 

For the NAS models, these numbers were determined by the best validation loss (MAE of the 

validation data) from eight independent randomly initialized AutoKeras trainings. Since the early 

stop was used in NAS, a fine tune of learning rate was conducted using the training and validation 

loss curves where each tuning run consists of 8,000 epochs, after the network structures were 

determined. The training and validation loss curves for the best learning rate of each model (the 

last row of Table 5.2) are shown in Figure A.1. As demonstrated, the validation loss curve floats 

slightly above the faster converging training loss and keeps decreasing until reaching the black dot. 

As the increase of the validation loss indicates the possibility of the model overfitting, we chose 

the number of epochs for each method as the one that achieved the minimal validation loss in the 

first 8,000 epochs. Therefore, the optimal number of epochs differ among methods. Although the 

fluctuations are observed in the validation loss curve, around the minimum validation loss the 

model performance is similar. 

Table 5.2 The hyperparameters for four NN models, which are the optimal results of each category in architecture, 
learning rate, and validation loss dip epoch. 

 SLNN DNN SLNN-NAS DNN-NAS 

# of layers and 

neurons 
[18] [24, 22, 20] [52] [60, 32] 

Learning rate 5e-04 9e-05 1.6e-04 7.7e-05 

# of epochs 2195 4444 2116 6046 
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Figure 5.2 The training (red stars) and validation (blue dashes with more variations) loss curves of the four NN models 
(the optimal number of epochs marked as the black dot). The two DNN models take more epochs to evolve the optimal 
results due to more complexity than SLNNs, while the NAS guided models lead to better model generality (lower 
possible validation loss). 

 

5.3.2 Overall Prediction Performance 

Their quantitative metrics, MAE, RMSE, and RE, on the test data are shown in Table 5.3 

below: 

Table 5.3 Prediction errors for four models in mean absolute error (MAE), root mean square error (RMSE), and relative 
error (RE) percentage. 

 SLNN DNN SLNN-NAS DNN-NAS 

MAE 0.1399 0.1312 0.1307 0.1250 

RMSE 0.1908 0.1805 0.1821 0.1784 

RE (%) 1.2667 1.1872 1.1844 1.1327 

 

Two NAS models have lower prediction errors than their counterparts with fixed 

architectures. For example, NAS results in 6.6% reduction on MAE of Ne for SLNN and 4.7% 
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reduction for DNN, respectively. DNN-NAS achieves the best prediction performance, i.e. lowest 

MAE, RMSE, and RE. Its improvement over SLNN is more than 10% on MAE and RE. 

 

 

Figure 5.3 BA-plots of the four optimal models (SLNN, DNN, SLNN-NAS, and DNN-NAS), in which the calculations are 
based on the test set. DNN tends to have the lowest averaged difference (green line in the upper right subplot) and 
the DNN-NAS owns the narrowest limits of agreements (distance between two red lines in the lower right subplot). 
The Y-axis is the Ne difference between the model prediction and the observation. The X-axis is the average of the 
model prediction and the observation.  
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The Bland-Altman (BA) plots in Figure 5.3 show the agreement between each model 

prediction and the ground truth Ne from ISR observation. All four models introduce a small 

positive bias ranging from 0.029 to 0.044 (several tenth of a percent of the average log10(Ne)). This 

is likely due to the large positive differences, i.e. the points above 1.96 SD line, particularly when 

the electron densities are low. These NN models seem to substantially overestimate Ne 

occasionally at the sharp dip of observations, such as 11 UT as indicated in Figure 5.5(b). 

Significant model development effort is needed to address this issue in future.  Statistically, SLNN 

shows the least agreement with the largest bias and the widest 95% limits of agreement (± 1.96 

SD). SLNN-NAS is better than SLNN, but still worse than DNN and DNN-NAS. DNN-NAS has 

a slightly larger bias but a narrower 95% limits of agreement than DNN. Again, DNN-NAS 

achieves the best agreement between the prediction and the ground truth since DNN-NAS adapts 

an optimal network structure and other hyperparameters, such as learning rate.  

 

5.3.3 Climatological Analysis 

The climatological study can verify whether the NN models can keep track of Ne 

characteristics at a long temporal scale. For comparison, the ISRIM [Holt et al., 2002; S R Zhang 

and Holt, 2007; S R Zhang et al., 2005] was used, which is an open-source online tool for Ne 

climatological study under different conditions (altitude, geodetic latitude, F10.7, and Ap3). The 

annual Ne patterns from ISRIM (Figure 5.4 (a)) and four NN models (Figure 5.4 (b) and (c)) in 

2012 are all plotted for 24 hours × 365 days (or 366 for the leap years). Although the NN models 

were trained using 1-hour data, they are flexible to take any time inputs, i.e. capable of automatic 

interpolation. As the best temporal resolution of ISRIM is 18 min, we used the best available time 

cadence 4-min of ISR data for NN models to achieve the smooth looking of these climatological 
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Ne maps without introducing any artificial structures. Note that as ISRIM used the fixed altitude, 

F10.7, and Ap3, and the four NN models were run with the same fixed values to obtain Figure 5.4 

(b). All NN models reproduce an asymmetric semi-annual pattern of Ne as shown in ISRIM, which 

resembles as a saddle-like structure with Ne concentration peaks in Spring and Fall. The two SLNN 

models show more choppy edges on the crests, which could imply the incapability of the simple 

architecture to fully catch the data characteristics. DNN-NAS seems to have two more appealing 

crests, while the other three NN models suffer a star like artifact at the center. The 14 isolated 
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thread-like enhancements in Figure 5.4(c) could be the indication of 27-day mid-latitude topside 

ionospheric electron variation [Rich et al., 2003]. 

(a) ISRIM climatological pattern of medium solar activity. 

 

(b) semi-annual patterns of climatological study. 
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(c) semi-annual patterns based on external geophysical indices. 

 

Figure 5.4 Annual electron density patterns of year 2012 from different sources: (a) ISR empirical model (ISRIM), (b) 
four model predictions based on the fixed F10.7 and Ap3, (c) four model predictions based on the time-varying F10.7 
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and Ap3. Based on the nature of neural network models, the input can be arbitrary values. We set the evenly 
distributed temporal information to get the time related drivers (year, DOY, and SLT), while comparison between (a) 
and (b) serves as the comparison on the climatological study, while (c) demonstrates a more realistic case of Ne 
annual pattern with time-varying F10.7 and Ap3 inputs. 

 

5.3.4 Daily Ne Pattern Prediction 

To evaluate the model performance, the daily Ne patterns were compared to illustrate how 

well the models predict in a resolved temporal scale varying from annual to daily. All the drivers 

(year, cyclic DOY and cyclic SLT, F10.7, and Ap3) served to get the model output. The two 

geophysical indices were obtained from OpenMadrigal database of MIT Haystack Observatory if 

not available in ISR. Since the days with full hourly Ne coverage are limited in the ISR data, we 

have identified a total of 128 days in the test data with a decent full-day hourly coverage. Three 

examples of hourly changes of Ne in a day (2007-07-06, 2012-01-15, and 2012-08-01) are shown 

in Figure 5.5 with observations and different model outputs. Note that 2007-07-06 and 2012-08-01 

do not have a full 24-hour coverage. To quantify the agreement between the prediction and the 

observation, Pearson correlation coefficients (CCs) and MAEs are calculated and shown in Figure 

5.5. The higher CC values indicate the better trend match (with the removal of the mean and 

normalization) and the lower MAEs indicate less discrepancies between prediction and 

observation. Between 06-10 UT, Figure 5.5(a) (2007-07-06) overestimated the trough and Figure 

5.5(c) (2012-08-01) underestimated the trough. For a particular day, the NN models could either 

underestimate (Figure 5.5(c)) or overestimate (Figure 5.5(b)). As shown in Figure 5.3 of the BA 

plots, although there are large positive prediction differences for low Ne observations, the overall 

biases of all four NN models are as small as several tenth of a percent of the average log10(Ne). In 

general, all NN models follow the observation patterns (gray cross) well, but DNN-NAS achieves 

the largest CC (and the smallest MAE except for 2012-01-15). For 2012-01-15 in Figure 5.5 (b), 
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the dip is later than the other two cases since the sun rises later in winter than in summer. Figure 

5.5 shows that DNN-NAS predicts the observations better than the other three models, which are 

the dominant cases in all 128 days with a good daily coverage.  

(a) 2007-07-06 

 

(b) 2012-01-15 

 



 95 

(c) 2012-08-01 

 

Figure 5.5 Daily Ne pattern prediction on three different days: (a) 2007-07-06, (b) 2012-01-15, and (c) 2012-08-01. 
Gray cross: the ISR observation; red triangle: SLNN; cyan star: SLNN-NAS; blue circle: DNN; green square: DNN-NAS. 
The two parameters (Pearson correlation coefficients and MAE) help evaluate how well model outputs predict the 
observed diurnal Ne pattern. Generally, all model outputs follow the observed diurnal pattern well, while DNN-NAS 
predicts the best. 

 

We calculated CC and MAE for all 128 daily patterns from the test set and ranked four 

models. The number of ranks for four models are shown in Table 5.4. Specifically, 1-4 ranks are 

corresponding to the decreasing CC or increasing MAE. For example, rank 1 represents the largest 

CC or the least MAE, which corresponds the best prediction of daily pattern. And rank 4 represents 

the smallest CC or the largest MAE, which corresponds the worst prediction of daily pattern. As 

can be seen, DNN-NAS has a dominatingly good prediction performance with 61 (48%) for CC 

(rank #1) and 54 (42%) for MAE (rank #1).  
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Table 5.4 The ranks for daily pattern predictions. Among the 128 days in the test set, the Pearson correlation 
coefficients (CCs) and mean absolute errors (MAEs) are calculated and sorted from best (highest CC or lowest MAE). 
The DNN-NAS shows the greatest number of rank 1 cases. 

  SLNN DNN SLNN-NAS DNN-NAS 

CC Rank 1 25 16 26 61 (48%) 

Rank 2 26 35 41 26 

Rank 3 32 48 31 17 

Rank 4 45 29 30 24 

MAE Rank 1 17 30 27 54 (42%) 

Rank 2 34 32 33 29 

Rank 3 29 32 44 23 

Rank 4 48 34 24 22 

 

To assess the performance of NN models during several continuous days, the duration with 

decent observation coverage is selected for a further comparison. Two indices as drivers (F10.7 

and Ap3) are shown in the upper panel of Figure 5.6. A cubic interpolation (up to 3rd order of 

polynomials) is applied to the Ap3 index for the reference purpose. In Figure 5.6, both model 

predictions and observations show a strong correlation to Ap3. For this specific week, the Ap3 

index varies from quiet time (near 20) to moderate active values more than 40. It has been noticed 

that Ne drops below 10.9 at the post-midnight of 2012-09-05 (as indicated by the arrow), which 

seems to be caused by the Ap3 peak at 00 UT of 2012-09-05. (Another Ap3 peak on 2012-09-03 

caused a similar but smaller Ne dip at the post-midnight of 2012-09-04 although ISR data were 

not available during this period.) All NN models seem to track these changes well. For SLNN 

model prediction, the narrower Ne variation matches ISR observation well with least MAE. DNN-

NAS seems to track the observation best, especially the Ne dip on 2012-09-05, resulting the highest 
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CC. Please refer to Table 5.4. Although DNN-NAS has the overall the greatest number of best 

performances on MAE and CC, the other methods also could have ranked higher in some cases. 

 

 

Figure 5.6 Ne patterns during 2012-09-02 to 2012-09-09. The two geophysical drivers are drawn in the upper panel 
with the shaded region indicating the continuous ISR observation available. Four model outputs are of different 
markers followed with CCs and MAEs (based on observational values) in parentheses. Clearly, we see the Ap3 serves 
as the major driver effect to the model outputs as the predictions dip down when Ap3 reaches its peak at early time 
of 2012-09-05. The two horizontal lines at 40 for Ap3 and 10.9 for log10(Ne) serve as references. 

 

5.4 Discussion 

In this study, we have shown that NAS helps find an optimal neural network setting to 

reduce the Ne prediction errors for both SLNN and DNN. Furthermore, NAS could make the 
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process more efficient with little manual interventions. Generally, we started with a large and 

sparse search poll of assigned hyperparameters. Based on the behavior of loss curves, the search 

poll was refined to reach the optimal neural architecture. The multiple GPU cores facilitated this 

hierarchic search. The manual determination of the optimal network structure is a daunting work. 

For example, with a fixed number of three hidden layers, thousands of full trainings were 

performed to obtain the number of neurons in each layer  [W Li et al., 2021]. Even the simple 

selection of the optimal learning rate could involve a substantial amount of manual work as we did 

for the two manual models. The NAS provides an efficient way to identify the optimal 

hyperparameters for NN models. For the current simple application of NAS for Ne prediction at 

the fixed geophysical location and altitude, the search process is fast (about 33 minutes on NVIDIA 

A6000, 22 minutes for NAS search and 11 minutes for additional epochs). However, the 

converging status of training and validation curves is absent in the early-stopping search. 

Considerate amount of manual work is still required to run additional epochs based on the NAS 

guided architectures and analyze the loss curves. Thus, we would assume more advanced NAS 

application could further reduce the tedious work spent in optimizing the neural networks. 

Overfitting remains a general concern with machine learning models. As shown in Figure 

5.2, the training loss could be continuously reduced. As a matter of fact, when we used a complex 

NN model, the fitting error can approach a very low value at the cost of reducing model 

generalization to an acceptable level with high prediction errors. Thus, the validation dips chosen 

in Figure 5.2 alleviate this issue. Furthermore, NAS uses an early-stopping criterion for an efficient 

search. For highly nonlinear problems, NAS could trap in a local minimum. We used multiple 

random initializations for NAS to avoid this problem. DNN-NAS stands out in the overall 

quantitative measurements, climatological study, and prediction rankings of daily patterns. 
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 All NN models predict Ne well during the moderate event in the daytime section (Figure 

5.6). This is consistent with previous studies of Ne prediction using NN models and due to a couple 

of reasons. First, the training data are confined to the condition (Ap3 ≤ 80 in Table 5.1), which 

causes the NN models to be prone to these cases. Secondly, the physical drivers are not fine enough 

in time, e.g. F10.7 is a daily average and Ap3 is 3-hour average. We conducted an additional 

training of DNN-NAS without the restriction on Ap3 (i.e, Ap3 could be larger than 80 which covers 

intense storm periods), namely DNN-NAS*. The comparison between DNN-NAS and DNN-

NAS* is shown in Figure 5.7. The shade region is approximately from 05 UT to 15 UT on 2012-

03-09. Though DNN-NAS has overall better CC and MAE, DNN-NAS* showed a much larger 

CC and lower MAE than DNN-NAS in the shade region. However, both models struggle to track 

the Ne dip around 08UT on 2012-03-10. As the ISR data with Ap3  80 are only account for less 

than 2% of the total data, it is not a surprise that DNN-NAS* only improved over DNN-NAS in 

certain regions and suffered performance loss in other regions [Gowtam et al., 2019; Habarulema 

et al., 2021; W Li et al., 2021]. In future work, either a separate model for major geomagnetic 

events or a general model with different weights on these events should be built with more event 

data to address this challenging problem. 
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Figure 5.7 DNN-NAS trained with Ap3≤ 80 and DNN-NAS* trained without the restriction on Ap3, the DNN-NAS 
models trained with and without filter on Ap3 have the prediction results in green and purple color. The CC and MAE 
calculated on the observational data are in the parentheses (the whole curve after the model name and the shade 
region after “shade”). 

 

One possible reason for the limited performance improvement of NAS models over fixed 

NN models may be the lack of sufficient training data. To address this issue, we applied cubic B-

spline to the vertical profiles of Ne with 15-minute cadence. After removing the abnormal data 

points, a total of nearly 43,000 data points around 350 km were used for training/validation/test 

(where the test set was changed to 2007 and 2016 in order to balance the amount of validation and 

test data), about 4 times of data points with 1-hr cadence (11,483). In the following sections, we 
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call the data with 1-hr cadence as the 1-hr dataset (2007 and 2012 as test data) and that with 15-

minute cadence as the 15-min dataset (2007 and 2016 as test data). However, the models trained 

on the 15-min dataset led to similar findings as those using the 1-hr dataset, i.e. NAS led to only 

marginal improvement of Ne prediction. Therefore, the lack of sufficient training data may not be 

the primary reason for the limited improvement of NAS models. There are a couple of caveats for 

modeling of the interpolated data study. First, the interpolation may introduce artifacts that deviate 

from the true data. This part of study merely investigated how the amount of data affect NAS, 

complexity, and overfitting. The real models are preferred to be built on the original data without 

simple interpolations. Secondly, the interpolation does not inherently introduce data variability. 

Since the peak electron density around 350 km altitude is known to exhibit significant Ne 

variations with changing ionospheric conditions, it may be challenging to predict these large 

variations without sufficient data (e.g. extra observations in addition to ISR) or more advanced 

deep learning techniques.   

We further conducted a complexity analysis of NN by increasing the number of network 

weights of a SLNN (denoted as “Complexity”) on the 15-min dataset. The validation loss is plotted 

with the change of the complexity of SLNN in Figure 5.8. As can be seen, the loss function drops 

quickly at the beginning and converges to a steady level slightly below 0.125 after the complexity 

reaches 128 network parameters, i.e. 16 neurons in the hidden layer. Therefore, for the ISR Ne 

data, fully connected NN seems to reach its performance limit at a simple structure. This explains 

why NAS could only achieve limited improvement over fixed NN models, which are already 

complex enough to model the data in hand.  
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Figure 5.8 Prediction performance changes along with the model complexity. The complexity is defined as the total 
number of trainable weights of the NN model. The mean absolute error of the validation set serves as the loss function, 
where the less loss indicates the better performance. 

 

It is also worth noting that DNN-NAS could achieve much better fitting, but at the cost of 

losing the generality. For an overtrained DNN-NAS model ([512, 512, 512, 512, 32]), the training 

MAE (after 7,900 epochs of training) is as low as 0.0529, compared to 0.1261 of SLNN for the 

15-min dataset. However, the test MAE dropped to 0.1587, compared to 0.1285 of SLNN, which 

indicates the loss of generality of DNN-NAS. In Figure 5.9(a) for the training data (2012 for the 

15-min dataset), the overtrained DNN-NAS can fit the complicated structures on March 9th and 

dip on March 10th of the observations, while SLNN fails to catch these structures. However, in 

Figure 5.9(b) for the test data (2007 for the 15-mind dataset), DNN-NAS shows some abnormal 

oscillations as the signs of overfitting.    
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(a)        (b)  

Figure 5.9 Overfitting of DNN (architecture: [512, 512, 512, 512, 32], green) (a) fitting and (b) prediction. SLNN (18 
hidden neuron, blue) is served as a benchmark. DNN can fit the ISR data more closely than SLNN as shown in (a). 
However, DNN leads to an unrealistic wavy pattern for prediction as shown in (b). 

 

Furthermore, the histogram of the training data across UT hours is shown in Figure 5.10(a). 

As can be seen, there is a trough between 0-12 UT (nighttime at the Millstone Hill). Usually, NN 

models are trained better with more data. This data imbalance (37% for 00-12 UT and 63% for 12-

24 UT) may be a partial reason that the Ne prediction performance of all NN models is worse in 

00-12 UT (nighttime) than 12-24 UT (daytime) as shown in Figure 5.5 in addition to the different 

dynamics during nighttime and daytime. We also plotted the histogram of training data in high 

solar activity (HSA) years (> 90 sfu) and low solar activity (LSA) years ( 90 sfu). They follow 

the same pattern of the total data, while the amount LSA data (54% of the total) is more than that 

of HSA (46% of the total). Again, this is consistent with Figure 5.5, where the prediction in the 

summer of 2007 (LSA year, Figure 5.5 (a)) is better than that in the summer of 2012 (HSA year, 

Figure 5.5 (c)). In addition, we calculated the prediction errors for two time periods of 00-12 UT 

and 12-24 UT (Table 5.5) as well as HSA and LSA years (Table 5.6). These results further confirm 

that the larger the data amount for training, the better the prediction performance. 
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(a) 

 

(b) 

Figure 5.10 The training data distribution across UT: (a) the total data; and (b) the data for high solar activity (HSA) 
years (>90 sfu) and for low solar activity (LSA) years (<90 sfu). The amount of data is more in 12-24 UT (63% of the 
total) than in 00-12 UT (37% of the total). 
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Table 5.5 Prediction performance of different NN models for 00-12 UT and 12-24 UT. The prediction performance of 
12-24 UT is much better than that of 00-12 UT because more data in 12-24 UT were available for training (63% vs 
37%). 

  SLNN DNN 
SLNN-

NAS 
DNN-NAS 

MAE 
00-12 UT 0.1727 0.1584 0.1597 0.1439 

12-24 UT 0.1082 0.1021 0.1005 0.0973 

RMSE 
00-12 UT 0.2329 0.2136 0.2172 0.2004 

12-24 UT 0.1449 0.1389 0.1365 0.1325 

RE (%) 
00-12 UT 1.5946 1.4593 1.4740 1.3280 

12-24 UT 0.9617 0.9078 0.8933 0.8653 

 

Table 5.6 Prediction performance of different NN models for high solar activity (HSA) years and low solar activity (LSA) 
years. The prediction performance of LSA is generally better than that of HSA because more available data in LSA 
years were available for training (54% vs 46%). 

  SLNN DNN SLNN-

NAS 

DNN-NAS 

MAE HSA 0.1350 0.1307 0.1297 0.1189 

LSA 0.1269 0.1250 0.1197 0.1139 

RMSE HSA 0.1847 0.1762 0.1753 0.1627 

LSA 0.1808 0.1656 0.1673 0.1598 

RE (%) HSA 1.2013 1.1283 1.1282 1.0270 

LSA 1.1932 1.0996 1.0929 1.0460 

 

Finally, the current study confines to Ne prediction at a fixed latitude and altitude in order 

to investigate the effectiveness of different NN models. 3D NN models have been proposed using 

the ionospheric radio occultation measurements in previous studies [Gowtam et al., 2019; 

Habarulema et al., 2021; Sai Gowtam and Tulasi Ram, 2017; Tulasi Ram et al., 2018]. The static 

nature of fully connected NN is also accountable for the limited prediction performance of this 

study (in line with previous studies) as electron density change is a dynamic process, influenced 

by different geomagnetic parameters or other factors at different space and time scales. For 

example, the increase of Ap3 affects neutral density, which can cause the electron density change 
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over the next few hours rather than the instant change. Though the geophysical indices serve as 

the drivers in many developed models [X Chu et al., 2017; X N Chu et al., 2017; Habarulema et 

al., 2021; W Li et al., 2021], the atmospheric neutral components at Millstone Hills, which have 

shown strong correlations with electron density, may not be accurately described by the current 

input parameters of the NN models (F10.7 and Ap3). Technically, the more advanced generative 

models with the time histories of the input parameters may lead to much more improved prediction 

than the fully connected NN models without memory mechanism. Besides, this study examined 

the feasibility of applying NAS in identifying an optimal network structure of future works on 

either building electron density vertical profile based on ISR or other electron density models. 

Combined with aforementioned technical advancement, electron density prediction offered by 

deep learning could be significantly improved. And new drivers may be needed to accommodate 

the resolved temporal resolution, such as adding the 81-day average F10.7 (F10.7p) for the 

historical information or the geomagnetic AE index, and the physical processes, such as neutral 

composition, in our future work.  Last but not least, information theory can help identify and select 

the drivers and their time histories that are relevant for predicting the output parameter, e.g., solar 

wind parameters [S. Wing et al., 2016; Simon Wing et al., 2022a; Simon Wing et al., 2022b].   
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6 Summary and Future Work 

6.1 SUMMARY 

 In this work, we have demonstrated the applications of deep learning on addressing a 

couple of ionospheric research topics: 1) Completion of the global total electron content (TEC) 

map using generative adversarial networks (GANs); 2) prediction of the regional ionospheric 

electron densities at a fixed height. Our results show the superior performance of these deep 

learning techniques. 

 For TEC map completion, DCGAN with Poisson blending (DCGAN-PB) was first 

proposed to learn and complete the IGS-TEC maps using random and MIT-TEC masks. DCGAN-

PB can learn from thousands of TEC maps in different conditions and extract useful features. Then 

it overcomes the challenges by effectively recovering the missing data in a large area, which is not 

covered by GNSS observation network. The performance of DCGAN is strongly influenced by 

the amount of training data and PB can significantly improve the final completed maps.  

The more advanced SNP-GAN model can further improve TEC map completion 

performance over the DCGAN-PB model both quantitatively and qualitatively. The end-to-end 

structured generator of SNP-GAN leads to better TEC completion performance and shorter 

inpainting time than DCGAN-PB. Both deep learning models can maintain the large-scale 

structures as shown in the IGS-TEC maps and show the potential on recovering the mesoscale 

structure from sparse MIT-TEC data, which is absent in the IGS-TEC maps. In summary, SNP-

GAN will be a tool of choice for TEC map completion thanks to its unique capability of revealing 

critical TEC structures and much improved completion efficiency.  
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 As our focus has shifted from the global to the regional, and from TEC to electron density, 

the regional electron density recorded by the incoherent scatter radar suffers a lot of temporal and 

spatial gaps. We thrived to pursue an automatic way to optimize the neural network structure for 

best Ne prediction performance. Among the neural network models for Ne prediction at a fixed 

height in the topside ionosphere using 16-year ISR observations at Millstone Hill, we demonstrate 

that neural architecture search (NAS) is able to achieve this goal. In addition to modeling efficiency, 

NAS derived DNN models also lead to better prediction performance than manually tuned SLNN 

(more than 10% improvement on MAE and RE) and rank the highest for daily Ne pattern prediction 

based on CC and MAE. The climatological Ne patterns from different NN models reveal the two 

crests in Spring and Fall seasons in general. We also investigated the reason for limited 

improvement of NAS due to the network complexity and overfitting besides the lack of memory 

mechanism of the fully connected NN. 

Among all the three applications above, a common practice is to investigate the cases under 

different conditions. For the split of training, validation, and test sets, we have classified the high 

solar activity (HSA) and low solar activity (LSA) based on the annual averaged F10.7. It is agreed 

that in HSA the errors tend to be larger than those in LSA, which can be explained by, not only 

either the absolute values of TEC/Ne are larger, but the environment is more dynamic during HSA 

years. A more active Sun brings solar winds, which later increases the chance of geomagnetic 

events such as storms. Besides, the amount of data plays a major role in training the deep learning 

model. Eighteen years of IGS-TEC data lead to much improved GAN models for TEC completion 

than only two years of data, while the Millstone ISR data with the observations concentrated during 

daytime and LSA renders better Ne prediction during these time periods as shown in Figure 5.10b, 
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where the period 12-24 UT contains around 63% observed data. A more balanced dataset or 

individual models under different conditions shall bring benefits to further improve these models. 

 

6.2 FUTURE WORKS 

For the GAN models on global TEC map, the upscaled resolution did provide a clearer 

view and better chance for us to identify the meso-scale structure as shown in Figure 4.7. Besides, 

the difficulty to train the model in a stable way is one of the major drawbacks among GANs. 

Therefore, a more advanced GAN capable of stably processing large amount of TEC map in a 

higher resolution shall be one of the main directions to proceed our further investigations. 

Meanwhile, the state-of-the-art Transformers-based models, , such as the chat generative pre-

trained transformer (a summary on chat-GPT [Ray, 2023]), and the diffusion models (such as 

DALL-E [Ramesh et al., 2021]) may be utilized in ionospheric research for much improved model 

capability.  

Based on the review of latest IRI models [Dieter Bilitza et al., 2022], not only does these 

models use common physical parameters such as the sunspot and solar index F10.7, but also they 

keep updating by referring to update-to-date external data source. Though IRI are designed to 

provide ionospheric parameters at a monthly scale, the deep learning models, such as recurrent 

neural network, may utilize IRI-2020 (latest version) as an input to further improve the prediction 

performance. The complete dataset shall largely benefit the ionospheric models aimed to either 

regional or global.  

Among all three studies, we are tackling the issue of incomplete data using advanced 

numerical methods, such as deep learning. Another way to expand our capability of filling these 
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data gaps is through combining different types of observations. During the collection of MIT-TEC 

data, the satellite to ground receiver communication is greatly bound to the limited coverage of 

ground receivers, which results in incomplete global TEC map, particularly over the oceans. 

Meanwhile, the radio occultation (RO) is the technique which utilizes the delay and bend angle of 

signal propagation within ionosphere to obtain Ne information. The low earth orbiting (LEO) 

satellites can make the RO measurements. For example, RO data from COSMIC satellites provide 

a better global TEC coverage. In addition, CubeSat is a more recent technique, which consists of 

many lower cost satellites in LEO. However, these radio communication quality depends on the 

coherent signals reflected off sea ice, inland water bodies, and calm ocean surface [Wang and 

Morton, 2022]. To improve the quality of these radio signal communications, machine learning 

methods have also been applied for automatic anomaly detections [Yunxiang Liu and Morton, 

2022]. For achieve better and reliable coverage on ionospheric parameters, it would be valuable to 

investigate the deep learning methods in the radio communications as another major future work. 
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APPENDICES 

APPENDIX A 

The architecture of the generator and discriminator of DCGAN-PB is shown in Figure A.1. 

The number on the top denotes the number of channels for convolution and that at the bottom 

denotes the dimension of the output matrix.  

 

Figure A.1 The architecture of generator (upper) and discriminator (bottom) used in DCGAN-PB. (Norm: batch 
normalization; DeConv: de-convolution; ReLU: rectified linear unit; Conv: convolution; Tanh: hyperbolic tangent 
activation function; Sigmoid: sigmoid activation function.) [Pan et al., 2020]. 

 

For the generator (Figure A.1), the input layer projects and reshapes a random vector z 

(1 ×  100 ) into a 4 ×  4 ×  512  high‐level feature matrix before passing through the batch 

normalization (Norm) (for stability of training) and the rectified linear unit (ReLU) (to introduce 

the nonlinearity). The three hidden layers have the similar structures with a deconvolution 

(DeConv) layer, a Norm layer, and a ReLU layer to convert the high‐level features to details in 
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TEC maps. The output layer is composed of another DeConv layer and a hyperbolic tangent 

activation function (Tanh) to get the final TEC map. Note that four DeConv layers are fractionally 

strided convolution instead of real deconvolution, which converts the original 4 ×  4 ×  512 

feature matrix into the final 64 ×  64 TEC map. Thus, the generator produces a 64 ×  64 TEC 

map (𝐺(𝑧)) from an 1 ×  100 random vector (z). 

For the discriminator (Figure A.1), the TEC map, either the real IGS TEC map or the 

generated TEC map (shown in Figure A.1), is fed into four convolutional layers to extract the high‐

level features from the TEC map. Note that the input layer uses only a leaky ReLU and three 

hidden layers have both the Norm layer and leaky ReLU for a stable training. Leaky ReLU is used 

here to avoid the zero‐activation problem of ReLU. Finally, the output layer reshapes the 

4 ×  4 ×  512 feature matrix into a 1 ×  4,096 vector, and then a fully connected layer followed 

by a sigmoid function is used to produce a value between 0 and 1. Thus, the discriminator reads a 

TEC map and yields a single value 𝐷(𝐺(𝑧)), based on which the prediction is made to tell whether 

it is the true TEC map (>0.5) or the fake one (<0.5). 
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