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ABSTRACT

BRINGING “VIRTUAL” TO “REALITY”: ENHANCING SECURITY AND

USABILITY ON VR SYSTEM AND APPLICATIONS

HUADI ZHU, Ph.D. Computer Science

The University of Texas at Arlington, 2024

Supervising Professor: Dr. Ming Li

With the rapid advancements in computer science, electronics, optics, and related

fields, virtual reality (VR) gradually penetrates into our daily lives, and is predicted to

become a core technology in the near future. Despite their potentials, however, existing

designs and solutions for VR applications remain at the infant stage, introducing limited

usability and efficiency for real-world users. Besides, the increasing prevalence of VR

presents new security and privacy threats due to the vast amount of information stored in

or accessible through VR devices. To bridge this gap, we exploit and combine techniques

from computer science and human biology, as well as other related domains, to enhance

security, usability, and efficiency of these novel applications.

In the dissertation, we investigate the emerging security and privacy threats of exist-

ing VR systems, propose novel mitigation schemes, and develop new techniques to improve

user experience in emerging VR applications. Our contributions are mainly threefold. First,

we introduce novel user authentication schemes on VR via a secure and convenient visual

channel. Specifically, we leverage the customized blink patterns and the biometric pupil

variations to identify legitimate users, which is deployable for commercial VR devices. We
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further enhance this work by exploiting the phenomenon of auditory-pupillary response

and introducing an effort-free biometric authentication scheme for VR devices, which out-

performs all state-of-the-art solutions. Second, we propose to harness users’ ocular behav-

iors to enable accurate quality of experience (QoE) assessment for 360-degree videos, by

modeling these cues into a graph and applying graph learning techniques to extract hidden

information in predicting the QoE score. Third, we build a novel video recommender sys-

tem for VR users leveraging additional insights from users’ physiological signals to learn

their preferences and interests and make corresponding recommendations.
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CHAPTER 1

INTRODUCTION

The rapid development of virtual reality (VR) has been seen in the past few years

with a consistently growing popularity. According to a recent report [217], the VR market

is around $28 billion in 2022; by 2030, the number is forecast to reach over $87 billion with

a constant annual growth rate of 15%. With the capability of providing an immersive and

interactive experience, VR has revolutionized gaming and entertainment and permeated a

variety of applications, including e-commerce, education, healthcare, and military [261].

For example, retailers can bridge physical and online stores via VR to provide an immersive

shopping experience for customers [168]; medical practitioners may communicate with pa-

tients in a VR environment for remote diagnosis [177]; military actions can be simulated

and practiced in a virtual battlefield [159]. In the above applications, tremendous amounts

of sensitive data are collected, processed, and stored on VR devices, such as customers’

credit card information, patients’ health status, and military secrets. Adversarial access to

VR devices would cause data breaches and other critical consequences. Therefore, imple-

menting user authentication mechanisms in VR is a crucial step in resisting unauthorized

access. On the other hand, novel VR applications such as video streaming and recommen-

dation suffer poor usability. Novel solutions tailored for the VR context are in dire need in

improving user experience with VR.

In this dissertation, we intend to enhance the security and usability of VR technolo-

gies by exploiting human biosignals, aiming to bring the “virtual” VR techniques into the

tangible “reality” of everyone’s daily lives. The rest of the dissertation is organized as

follows.

1



Chapter 2 investigates security threats against existing user authentication schemes

on VR, and presents the design, implementation, and evaluation of a two-factor user au-

thentication scheme, BlinKey, for VR devices that are equipped with an eye tracker. A

user’s secret passcode is a set of recorded rhythms when he/she blinks, together with the

unique pupil size variation pattern. We call this passcode as a blinkey, which can be jointly

characterized by knowledge-based and biometric features. To examine the performances,

BlinKey is implemented on an HTC Vive Pro with a Pupil Labs eye tracker. Through exten-

sive experimental evaluations with 52 participants, we show that our scheme can achieve

the average EER as low as 4.0% with only 6 training samples. Besides, it is robust against

various types of attacks. BlinKey also exhibits satisfactory usability in terms of login at-

tempts, memorability, and impact of user motions. We also carry out questionnaire-based

pre-/post-studies. The survey result indicates that BlinKey is well accepted as a user au-

thentication scheme for VR devices.

Chapter 3 further proposes SoundLock, a novel user authentication scheme for VR

devices using auditory-pupillary response as biometrics. During authentication, auditory

stimuli are presented to the user via the VR headset. The corresponding pupillary response

is captured by the integrated eye tracker. User’s legitimacy is then determined by com-

paring the response with the template generated during the enrollment stage. To strike a

balance between security and usability in the scheme design, an optimization problem is

formulated. Due to its non-linearity, a two-stage heuristic algorithm is proposed to solve

it efficiently. The solution provides necessary guidance for selecting effective auditory

stimuli and determining their corresponding lengths. We demonstrate through extensive

in-field experiments that SoundLock outperforms state-of-the-art biometric solutions with

FAR (FRR) as low as 0.76% (0.91%) and is well received among participants in the user

study.

2



In Chapter 4, we develop EyeQoE, a novel method that models eye-based cues into

graphs and develop a GCN-based classifier to produce QoE assessment by extracting in-

trinsic features from graph-structured data. We further exploit the Siamese network to

eliminate the impact from subjects and visual stimuli heterogeneity. A domain adaptation

scheme named MADA is also devised to generalize our model to a vast range of unseen

360-degree videos. Extensive tests are carried out with our collected dataset. Results show

that EyeQoE achieves the best prediction accuracy at 92.9%, which outperforms state-of-

the-art approaches. As another contribution of this work, we have publicized our dataset

on https://github.com/MobiSec-CSE-UTA/EyeQoE_Dataset.git.

In Chapter 5, we introduce Phyre, a video recommender system tailored for VR.

Our approach leverages viewers’ physiological responses as they engage with VR videos

to infer their preferences and thus make future recommendations. We integrate these new

physiological user-video interaction measures into the mainstream recommendation frame-

work and renovate the graph learning-based paradigm to accommodate the new changes.

The recommender system is further empowered with a novel domain adaptation approach

named CMCCDA to address the data scarcity problem for model training. We also de-

velop an energy-efficient adaptive encoding scheme to reduce the energy consumption on

the VR device. We collect a physiological dataset for video recommendation in VR and

demonstrate through extensive evaluation that Phyre significantly outperforms state-of-the-

art schemes by up to 68.0% in recommendation precision and up to 28.8% in ranking qual-

ity.

Finally, Chapter 6 concludes this dissertation and discusses future research work.
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CHAPTER 2

BLINKEY: A TWO-FACTOR USER AUTHENTICATION METHOD FOR VIRTUAL

REALITY DEVICES

2.1 Introduction

2.1.1 Motivation

Virtual Reality (VR) is an immersive technology that allows users to experience a

virtual world with a head mount device. The rapid development of VR has been seen

in the past few years with a consistently growing popularity. According to [83], 20.8

million people in the US used VR headset in 2019. This number is forecast to grow to

28.1 million by 2021. Statistics also show that the worldwide shipment of VR devices

has grown over 60% in the past two years [73]. By 2025, the value of the VR market is

expected to reach USD 87.97 billion, from USD 11.52 billion in 2019 [120]. While VR

is traditionally used for recreational purposes, it is now rapidly permeating a variety of

mission-critical applications ranging from e-business [11, 50, 258], healthcare [61, 222,

273], social networking [97, 119, 283], manufacturing [36, 89, 181], military training [142,

243, 271], and education [9, 22, 101].

In these applications, VR devices store their users’ personal information, such as

emails, photos, videos, and browsing history, as well as their online login accounts and

passwords. Recently, online shopping and in-app purchases have emerged as important

e-commerce opportunities for VR. For example, eBay launched a VR department store,

where users can shop around in a virtual environment and make transactions online [33].

VR is also deemed as the future of social media interactions. In March 2020, Facebook

started beta testing for its new VR social network “Horizons” where users engage with

4



news content, share information, and entertain themselves in the virtual world by logging

into Horizons using their accounts and passwords [191]. In the above scenarios, as the

process of inputting data to current VR systems tends to be tedious, users may store their

account and credit card information for auto-login and in-app purchase [194]. As a result,

such practices may result in the security breach and even financial loss if the device is

accidentally left unattended to people with ill purposes, including close friends and room-

mates. Therefore, the employment of user authentication mechanisms is crucial for VR

devices. Only the owner or authorized users are able to unlock the device, while outliers

are prohibited from access.

Unfortunately, user authentication on VR devices is yet far from well investigated.

Current solutions, including password, digital PIN, and drawing pattern, mostly follow

conventional approaches for general personal devices. However, these schemes have been

proved vulnerable to shoulder-surfing attacks [82, 99, 105], as how password/PIN/pattern

entered in VR device leaves little leverage to obfuscate the secret entry process. If the

adversary is aware of the virtual digit board layout, it can easily decode hand movements

to infer PIN inputs. The inference is even easier for the pattern-based authentication since

the attacker only needs to track the hand movement trajectory without exquisite knowledge

of the virtual board input design. Moreover, because a user’s view is completely blocked

from the physical world by the headset, it renders the user challenging to be aware of the

presence of shoulder-surfing attackers.

To resist shoulder-surfing attacks, a shuffled keyboard has been proposed [14, 211];

the system adopts a new randomly generated keyboard layout each time a user intends

to enter the credential. While leaving the key inference almost impossible, it sacrifices

the authentication usability. Extra effort is incurred to the user in searching for keys on a

shuffled keyboard. Recently, some novel user authentication methods for VR devices have

been introduced. A couple of them focus on the improvement of the explicit knowledge-

5



based authentication schemes, such as 3D password [98, 305] and spatial targets [94, 125].

These methods provide more robust authentication by implementing more complicated se-

cret codes. However, they do not improve usability, if not further worsening it. For ex-

ample, in [305], users are required to remember and enter a complicated 3D drawing pat-

tern for authentication, which results in longer authentication time and a higher error rate.

Some existing efforts employ the implicit biometrics to defend against shoulder-surfing

attacks [21, 145, 185, 204]. Nonetheless, using biometrics alone suffer from irrevocabil-

ity, which renders replay attacks a severe threat if even a single user’s biometric sample is

acquired by an attacker [87]. There are also some prior works on two-factor authentica-

tion [17, 34, 155]. So far, the existing solutions either rely on highly advanced equipment,

such as a customized sensory headset with a number of electrodes to capture the brain

signals[155], which is not readily available on current VR devices, or introduce heavy cog-

nitive load that has users to perform complex and tedious authentication tasks.

2.1.2 Proposed Methodology

In this paper we propose BlinKey, a practical two-factor authentication scheme for

VR devices that are equipped with eye trackers. Users authenticate themselves by blinking

eyes following certain rhythm only known by themselves. It is a new passcode-style au-

thentication. Rather than numbers, letters, or characters, users choose different beats/rhythms

when blinking. Basically, a blinkey1 can be easily created by the user, for example, by ex-

tracting some beats from his/her favorite songs or jingles. The knowledge-based feature

of a blinkey is characterized by the timing of its blinks, which can be recorded by the eye

tracker together with the system clock. Additionally, a blinkey is also characterized by its

biometric features. We observe that how human pupils adapt to light after blinks, more

1In this paper, we utilize the Italian font BlinKey to represent the authentication scheme, while the regular

font blinkey as the password itself.
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specifically, the variation of pupil size, is unique for each person. As a blinkey is com-

posed of multiple blinks, we then treat the pupil size variation, captured by the eye tracker,

between blinks as a biological marker. Incorporating the above knowledge-based and bio-

metric features, BlinKey serves as two-factor authentication to determine whether a user is

legitimate or not.

BlinKey can be an ideal solution for user authentication on VR devices. First, it

can effectively resist shoulder-surfing attacks. Unlike conventional PIN/password/pattern

authentication, which requires users to hold the controller to enter credentials, BlinKey is

simply performed by user blinking eyes. As the visual sight is blocked by the headset, it

is impossible for the adversary to observe the passcode entry process. Second, it is conve-

nient to perform. BlinKey is a hand-free authentication without imposing effort-demanding

tasks. Third, as it involves both explicit knowledge and implicit biometric features, it is

robust against attacks, such as guessing attacks and shoulder-surfing attacks. Although

BlinKey only works for VR devices that are equipped with eye trackers, they are not a

small population. To our knowledge, many VR headsets, such as HTC Vive Pro Eye [116],

FOVE 0 [93], Pico Neo series [2], and Varjo VR-1 [270], are all in this category. These

devices can therefore provide eye blinks and pupil size variations to the authentication unit

on the device. We would like to note that integrating eye-tracking technology is a trend of

VR headsets [223, 247], as it significantly improves user experience. For example, it helps

VR headsets to simulate depth of field and focus, providing a more realistic and natural

visual experience. BlinKey, as another user authentication scheme, can be employed for

accessing both stand-alone devices and online accounts. This is also the case for many

other user authentication schemes. For example, fingerprint-based authentication is widely

adopted not only by a broad set of personal devices but also by some online services, such

as online banking [86, 193].
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BlinKey is composed of two phases. In the enrollment phase, users are asked to

create their own blinkeys and enter them multiple times for the training purpose. During

the login phase, the user simply enters the previously enrolled blinkey to unlock the device.

If it matches the training samples, the user is authorized; otherwise, the access request is

denied. To investigate the performance of BlinKey, we recruit 52 volunteers and collect

1306 blinkey samples from them. Classification accuracy is studied concerning different

parameter settings. Based on the result, we implement our scheme on a commercial VR

device with the parameter values that optimize the authentication performance. Another

43 participants are recruited. Multiple in-field experiments are conducted to evaluate the

system performance in terms of attack resistance, time consumption, login attempts, the

impact of user motions, and memorability, which outperform state-of-the-art solutions.

2.2 Related Work

2.2.1 Knowledge-based Authentication

In recent years, how to authenticate users in VR devices has been increasingly ex-

plored in both computing and security research communities. George et al. carried out user

study for the direct transfer of well-established user authentication concepts, including PIN

and pattern lock, into VR [99]. Due to their vulnerability to shoulder-surfing attacks, a shuf-

fled keyboard is proposed [14, 211]. Users enter their credentials on a virtual keyboard with

a randomly generated layout each time. Yu et al. then develop a 3D pattern lock that creates

an additional entropy for user’s secret credentials [305]. Funk et at. [94] developed a graph-

ical authentication mechanism based on gaze-tracking, called LookUnlock. The passcode

consists of a set of virtual objects that a user’s gaze focuses on in the correct sequence. A

similar idea is adopted by [98, 125]. These schemes produce rather limited key space. For a

passcode constructed by selecting 4 objects in a sequence from a total of 9 objects, the key
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space is merely P(9,4) = 3,024, even smaller than that of the 4-digit PIN2. Moreover, it is

not an easy task to remember the correct sequence of 4 objects. For example, according to

the result [98], their 7-day recall rate is 74.1%. As shown in Section 2.6.3.3, this value is

89.6% for BlinKey. Mathis et al. proposed RubikAuth [170], where users select digits from

a virtual 3D cube manipulated with a handheld controller. Following a similar idea, Ru-

bikBiom [169] further takes into account user behavioral biometric features such as hand

movement when entering credentials from the virtual 3D cube. With the introduction of

an additional layer of protection, RubikBiom is more robust against guessing attacks and

shoulder-surfing attacks. As noted by the authors, both schemes require two-handed inter-

actions which are inconvenient for users with motor disabilities. BlinKey is free from such

a restriction for allowing users to enter their authentication credentials with eye blinks. Al-

sulaiman and Saddik [17] propose a 3D password that combines textual passwords and the

user’s behavior biometrics for entering the password.

2.2.2 Biometric Authentication

Unlike knowledge-based authentication, which is based on “what you know”, bio-

metric authentication leverages “who you are” by looking into the unique biometrics that

people are naturally born with. It has gained preference in certain situations due to its

robustness against guessing attacks and shoulder-surfing attacks.

Gesture biometrics: Prior works [145, 185, 204] extract user’s distinctive biomet-

ric features from their head/hand/body movements for user authentication. These schemes

require users to turn the head, bend the body in different directions, or throw/catch partic-

ular virtual objects. The involved actions may be awkward to perform especially in public

places.

2We will discuss in Section 2.7 that BlinKey offers the key space orders of magnitude higher than conven-

tional passcodes, such as digit-PIN and password, of the same length.
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Table 2.1: Comparison among different user authentication approaches on VR devices. (*)
The work [99] discusses both PIN and pattern lock for VR.  : method fulfills criterion. #:
method does not fulfill criterion. –: not enough information.

Scheme
Key

space
Hand-
free

Sensor-
free Accuracy Security

Auth
speed

Memor-
ability

PIN [99]* ⋆ #  ⋆⋆⋆ ⋆ Short ⋆⋆⋆
Pattern lock [99] ⋆ #  ⋆⋆⋆ ⋆ Short ⋆⋆⋆

Shuffled keyboard [14] ⋆ #  ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆
LookUnlock [94] ⋆   ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆
3D Pattern [305] ⋆⋆ #  ⋆⋆⋆ ⋆⋆ Short ⋆
RubikAuth [170] ⋆⋆ #  ⋆⋆⋆ ⋆⋆ Short ⋆

Hand gesture[145] ⋆⋆ #  ⋆ ⋆⋆ Short -
Brain biometrics [155] ⋆⋆⋆  # ⋆⋆ ⋆⋆ ⋆⋆ -
Head movement [185] ⋆⋆   ⋆ ⋆⋆ Long -

SkullConduct [234] ⋆⋆  # ⋆ ⋆⋆ Short -
Eye movements [240] ⋆⋆  # ⋆⋆ ⋆⋆ Short -

3D Password [17] ⋆⋆⋆ #  ⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆
RubikBiom [169] ⋆⋆⋆ #  ⋆⋆ ⋆⋆⋆ Short ⋆

BlinKey (this work) ⋆⋆⋆   ⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆

Gaze biometrics: Gaze tracking has recently been explored for user authentica-

tion. Existing solutions either examine the position or the content that a user is looking

at or eye movement. The former is based on the hypotheses that each user’s gaze be-

haves uniquely when watching the screen [45, 220, 221]. These schemes rely on a large

number of data samples to extract sufficient features for accurate authentication. As a re-

sult, they typically take more than one minute to authenticate a user. The second class of

gaze-based authentication leverages the uniqueness of eye movement to fingerprint each

user [28, 80, 114, 115, 137]. Relevant features include eye movement velocity and sac-

cade latency. As pointed out by [311], these solutions suffer from irrevocability, which is

in fact a common pitfall for many pure biometric-based authentication schemes. To ad-

dress this issue, [240, 311] introduce the idea of random stimuli. As a result, the biometric

features observed in each authentication trial become dynamic, leaving reply attacks in-
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feasible. Nonetheless, they only work with precise eye movement tracking. For example,

[240] requires a sampling rate of up to 500 Hz and tracking error within 0.4◦, which cannot

be met by current add-on eye trackers for VR devices.

Other biometrics. Schneegass et al. [234] present SkullConduct, a biometric system

that uses bone conduction of sound through the user’s skull for user identification. A micro-

phone is used to capture the skull vibration. Recently, Lin et al. [155] utilized responsive

brainwaves when a user is presented with visual stimuli for authentication. Sophisticated

electrodes should be integrated into VR headsets to capture the human brainwave.

2.2.3 Rhythm-Based Authentication

Only a few rhythm-based authentication schemes have been proposed so far. Wob-

brock [287] developed an authentication system for single-key devices called “TapSongs”,

which enables user authentication on a single “binary” sensor (e.g., button) by matching the

rhythm of tap down/up events to a jingle timing model created by the user. A group authen-

tication scheme, Thumprint [68], was proposed by Das et al., using the rhythm of a secret

knock to authenticate a group of users, while each user’s expression of the secret is dis-

cernible. Chen [54] built a two-factor rhythm-based authentication scheme for multi-touch

mobile devices. Recently, Hutchins et al. [118] developed a rhythm-based authentication

scheme for wearable devices equipped with a touching sensor. TapMeIn [188] is another

authentication method for smartwatches. On top of the secret tapping rhythm, it jointly

considers biometric features, such as pressure and finger size of tapping. All these features

are captured by smartwatch’s touching screen/sensors that are missing from current VR de-

vices. Thus, TapMeIn is inapplicable to our case. Observing that how human pupils adapt

to light after blinks, more specifically, the variation of pupil size, is unique for each person,

we then treat it as a biological marker. Together with the user’s blinking rhythm, they are

both captured by the eye tracker and serve as secret credentials for user authentication.
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Summary. Table 3.9 provides a comprehensive comparison between some repre-

sentative user authentication schemes for VR and BlinKey. The existing schemes are cat-

egorized into three groups, knowledge-based authentication (light gray), biometric-based

authentication (medium gray), and two-factor authentication (dark gray). The comparison

is made from the aspects of security (including “key space” and “security”) and usability

(including “hand-free”, “extra sensors”, “accuracy”, “login time”, and “memorability”).

The salient advantage of knowledge-based authentication is mainly on its usability,

with the highest accuracy and the lowest login time among the three groups. As user’s

passcodes are mostly entered by hand controllers, no extra sensor is needed. Nonetheless,

these schemes have been criticized for their security, for example, vulnerable to shoulder-

surfing and/or statistic attacks. This issue is partially resolved by some biometric-based

authentication schemes. First, biometric features can barely be eavesdropped. Second,

user’s unique biometrics introduce a much larger key space. On the other hand, due to

the hardware restriction, the explorable biometrics from VR devices are still limited so far.

Some approaches require users to perform body/head/hand movement that can be readily

captured by VR devices; some others rely on extra sensors, e.g., EMG and ECG sensors,

to extract biometric features. There also have been a couple of two-factor authentication

schemes that combine regular knowledge-based passcodes and user biometrics. Most of

them exhibit better security performances than the other two. However, due to the involve-

ment of behavior biometric features, which are dynamic even from the same user, their

accuracy is degraded a little bit than knowledge-based schemes. Apparently, BlinKey be-

longs to the third group. Compared with [17, 169], it is entered hand free and thus friendly

for users with motor disabilities. Moreover, as discussed in Section 7, rhythmic patterns

produce a significantly larger key space than conventional PIN/password/pattern lock; so

is BlinKey compared with [17, 169].
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2.3 Threat Model

The adversary’s goal is to impersonate the legitimate user and successfully authen-

ticate itself to the VR device. This work pertains to the discussion of the following com-

monly seen attacks.

• Zero-effort attack. The adversary does not have any side information of the enrolled

blinkey and tries to get authenticated by random guessing. It is also referred to as

guessing attack in some other literature.

• Statistical attack. The adversary has access to a large volume of blinkeys and is aware

of the set of features utilized by the scheme. It performs statistical analysis over the

dataset and derives probability distribution over each feature. Then, the adversary

forges synthetic blinkeys following the acquired distributions.

• Shoulder-surfing attack. The adversary is able to observe the authentication process

while the victim is entering a blinkey. Then it mimics the legitimate user by repeating

what it has observed.

• Credential-aware attack. This attack is even more powerful than the shoulder-surfing

attack. We assume that the adversary has the full information of the legitimate user’s

secret blinking rhythm. The only difference from the shoulder-surfing attack is that

the latter acquires blinking rhythm via visual observation.

We also make the following assumptions throughout the paper. The adversary cannot

compromise the VR device or its connected server to access the user’s blinkeys; otherwise,

it renders secure user authentication design impossible. Due to the similar reason, the

connection between the VR device and the server is also deemed secure.
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2.4 BlinKey Characterization and Features

2.4.1 Definition of BlinKey

A blinkey is composed of time instances stamped by the system clock when a user

blinks in a self-designed rhythm, together with variations of pupil size exhibited between

consecutive blinks. Both information can be recorded by the eye tracker. Figure 2.1

gives three exemplary blinkeys. Blink onset/offset indicates the moment that eyes are

open/closed. An eye is deemed closed when its pupil size is measured zero and open

otherwise. The length of a blinkey is simply the number of blinks it contains. For example,

all the three blinkeys in Figure 2.1 are of length 6. We observe that the pupil size is not

fixed between blinks. It experiences some fluctuations in the following procedures. When

the eye is open, the eye tracker quickly captures the pupil’s instantaneous size, which is

at a large value. Then the pupil quickly adapts to ambient light by adjusting its diame-

ter. After a short period, around dozens to hundreds of milliseconds, the pupil returns to

a relatively stable status with micro-fluctuations. More importantly, we find that such a

pupil’s adaptation pattern varies across people. Figure 2.1(b) and 2.1(c) demonstrate the

same blinking rhythm performed by two users. While the rhythm is almost identical, the

way how pupil size changes is clearly distinct between two trials. This is due to the pupil

dilation/constriction that is controlled by the iris muscles with a biologically unique pat-

tern [228]. Moreover, we also notice in Figure 2.1 that the pupil size variation pattern is

consistent from the same user. Based on the above observation, we thus treat the pupil size

variation between blinks as an additional dimension of features that fingerprint individuals.

2.4.2 Feature Selection

Since a blinkey consists of both knowledge-based features (“something you know”)

and biometric features (“something you are”), we are interested in identifying suitable fea-

ture set for user authentication.

14



0 2 4 6 8

Time (s)

0

30

60
P

u
p
il

 s
iz

e
Onset Offset

(a) Blinkey 1

0 2 4 6 8

Time (s)

0

30

60

P
u
p
il

 s
iz

e Blink

(b) Blinkey 2

0 2 4 6 8

Time (s)

0

20

40

P
u
p
il

 s
iz

e Blink interval

(c) Blinkey 3
Figure 2.1: Three exemplary blinkeys.

2.4.2.1 Knowledge-based Features

The knowledge-based features are the blink rhythm designed by the legitimate user.

We mainly focus on the following three features blink time instance, blink interval, and

relative interval.

• Blink time instance. The blink rhythm can be uniquely identified by a set of blink

onsets and blink offsets, indexed by their timestamps, which are represented by two

vectors ααα = {α1, α2, · · · , αn} and βββ = {β1, β2, · · · , βn}. Here, αi and βi are the

timestamps for the ith blink onset and offset, respectively, and n is the blinkey length,

i.e., the number of blinks contained. For analysis consistency, we index the first blink

onset as 0, α1 = 0. In other words, we deem the starting point of a blinkey as the

moment when a user opens her eyes for the first time to perform her blinkey.

• Blink intervals. To characterize a blinkey’s rhythm, we further extract the inter-

onset intervals of a blinkey, defined as the time duration between two adjacent blink

onsets, as shown in Figure 2.1: γγγ = {γ1, γ2, γ3, ..., γn−1}, where γi = αi+1 − αi.

• Relative intervals. In actual scenarios, users’ input speed may be influenced by their

moods or other factors. Thus the time instance for each blink and their intervals may

be different even for the same user entering a same blinkey. To take this into account,

we introduce another feature, relative interval, which is defined as the ratio of a blink

interval to its previous one: ηηη = {η1, η2, η3, ..., ηn−2}, where ηi =
γi+1
γi

.
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2.4.2.2 Biometric Features

As discussed above, the pupil size variation of each user can be treated as her bio-

metric identifier. We now investigate the proper set of features to extract for authentication.

• Fourier coefficients. From the perspective of frequency analysis, the pupil size vari-

ation consists of components under different frequencies. To extract this informa-

tion, we then apply the fast Fourier transform (FFT) over time-domain samples. The

Fourier coefficient associated with each frequency component then serves as part of

biometric features, φφφ = {φ1, φ2, · · · , φm}, where φi (i∈ [1,m]) is the mean Fourier co-

efficient of the ith frequency component. The larger coefficient of a higher frequency

component a user produces, the more agile her pupils adapt to luminance. Compu-

tation and parameter setting details regarding Fourier coefficient extraction will be

discussed in Section 2.5.3.

• Statistical features. In addition to Fourier coefficients, we further explore a few sta-

tistical features in both time and frequency domains that have been widely adopted

in characterizing signals [18, 146, 164]. A set of candidate statistical features in-

clude, Maximum, Minimum, Mean, Median, Root Mean Square (RMS), Standard

Deviation (StD), Mean Absolute Deviation (MAD), Kurtosis, Skewness, Interquartile

Range (IQR), Roughness, Sharpness, Mean Crossing (MC), Willison Amplitude

(WAmp), Slope Sign Change (SSC), in time (T) and frequency (F) domains.

Since not all of them play essential roles in our task, it is necessary to filter out

non-critical ones. For this purpose, we calculate the Fisher score for each above

feature. As one of the most commonly used supervised feature selection methods

[158, 244], the Fisher score takes the inter-class variance and the in-class variance

over the values of a given feature and computes their ratio. A higher ratio indicates

that the distances between classes are much larger than those within the same class.
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Figure 2.2: Fisher score and classification accuracy for statistical features.

Classification accuracy, an accuracy indicator of feeding each feature alone into the

classifier, shows how well these features work for the classifier individually. Hence,

we compute both the Fisher score and the classification accuracy for each statistical

feature. Their results are shown in Figure 2.2(a) and Figure 2.2(b), respectively, in

a descending order of a combination of both metrics. To facilitate the discussion,

the Fisher score is normalized. We thus pick the top-ten best features, i.e., with the

highest combined values, to constitute the statistical feature set sss = {WAmpF , StDF ,

MaximumF , SSCF , SkewnessF , SSCT , MeanT , KurtosisF , MedianT , IQRF}. The

result is shown in Table 2.6.

The entire feature set to characterize a blinkey is then written as fff = {ααα , βββ , γγγ , ηηη , φφφ , sss}.

2.5 System Design

2.5.1 System Overview

Figure 2.3 shows an overview of the BlinKey system. It involves registration (or

called enrollment) phase and login (or called testing) phase. For either phase, the workflow

of data processing is summarized as follows. Authentication is turned on when a user
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Table 2.2: The selected statistical features.

Feature Definition Fisher Accuracy

WAmpF The count of significant changes in frequency 0.9999 0.7614
StDF The extent of deviation in frequency 0.9998 0.7348

MaximumF The maximum amplitude in frequency 0.9999 0.7129
SSCF The count of slope sign changes in frequency 0.9992 0.6287

SkewnessF The distortion in frequency 0.9984 0.6042
SSCT The count of slope sign changes in time 0.9962 0.5339
MeanT The average amplitude in time 0.9873 0.4758

KurtosisF The sharpness of the peak in frequency 0.9882 0.4677
MedianT The value that divides the signal in half in time 0.9567 0.3882

IQRF The 1st quartile subtracted from the 3rd in frequency 0.9454 0.3538

Figure 2.3: System overview.

awakens the screen, opens an app, or triggers a purchase interface. In a pop-up virtual

scene, the user is asked to blink in a self-designed pattern as an input blinkey. Once the

authentication procedure is activated, the eye tracker keeps recording the user’s real-time

pupil size signals and transmit them to the server. The signal first passes the start/end

detection module so as to segment the entire blinkey. The raw signal is then denoised

and decomposed. Its outputs, including blinking rhythm and pupil size variations, are then
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fed into the feature extraction module to distill knowledge-based and biometric features.

Finally, the classifier decides whether the given blinkey is legitimate or not.

2.5.2 Start and End Detection

A challenge of our approach lies in how to detect a blinkey, more specifically, identify

its start and end points. This task is easy for authentication on regular personal devices,

such as smartphones and tablets. For the case of pattern lock, the moment that a finger

touches/leaves the screen is simply the start/end point of one trial. These moments can

be accurately recognized by touching sensors embedded in the screen. For the case of

password-based authentication, the end of one entry is explicitly indicated by tapping the

enter/return key. Unfortunately, such hardware is unavailable at VR devices. One viable

solution is to create a virtual enter/return key. However, it may incur extra effort for a user

to interact with the virtual screen via a controller. Alternatively, we propose to have a user

to indicate the start/end of a blinkey for closing the eyes a while, as shown in Figure 2.4. In

this way, the moment that the user opens eyes for the first time after the long blink is treated

as the start of the blinkey. Similarly, the moment that the user closes eyes right before the

long blink is treated as the end of the blinkey.
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Figure 2.4: Illustration of start/end of a blinkey and the long blink.
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The remaining question is to decide the duration for the long blink. Recall that a

single blink is determined by the forceful closing of the eyelid. The system should be

capable of differentiating between a long blink and a blink belonging to a blinkey or a

spontaneous blink. We start by analyzing the statistics of spontaneous blinks based on

the 434 blink samples collected from 22 volunteers. Its statistical distribution is plotted

in Figure 2.5. We find that the duration of spontaneous blinks ranges from 0.09 to 0.26

second with its mean as 0.12 second, and the 95th percentile as 0.18 second. Our discovery

concurs with the result of UCL Researcher [37], stating that the duration of a spontaneous

blink is on average 0.1 - 0.15 second, as well as the result of Harvard Database of Useful

Biological Numbers [195], stating that the duration of spontaneous blinks mainly ranges

from 0.1 to 0.4 second.

We further investigate the statistics of voluntary blinks of blinkeys. Its distribution

is derived based on another phase of data collection, where we acquired 1306 blinkey

samples from 52 volunteers. The details of this data collection phase are provided in 3.3.3.

We observe in Figure 2.5 that the 95th percentile exists at 1.95 seconds. Based on the

statistical analysis, we set the duration of the long blink as 2.5 seconds. A longer duration

will sacrifice the usability of authentication, while a shorter value renders the detection

error-prone. As a note, a user does not have to estimate the exact 2.5 seconds before

performing a blinkey, as long as the waiting duration is no less than the threshold. This

requirement is easy to meet.

2.5.3 Pre-processing

The objective of this component is twofold, to filter out noise in the raw signal and to

decompose the signal into ingredients that contain knowledge-based and biometric features

separately.
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Figure 2.5: Statistical distribution of duration for spontaneous blinks and voluntary blinks.

2.5.3.1 Denoising

As shown in Figure 2.6, the raw signal is mainly composed of three components:

voluntary blinks, spontaneous blinks, and the pupil adaptive variations between blinks. The

useful information includes voluntary blinks and pupil adaptations. Spontaneous blinks are

conducted in the pre-motor brain stem and happen without conscious efforts, like breathing

and digestion. It helps to spread the tear to all parts of the eyes and helps to keep them

moist [285]. They are done involuntary and distinct from the voluntary blinks in a blinkey.

As the involvement of spontaneous blinks brings the noise to the feature extraction and thus

authentication accuracy, the goal of this phase is to eliminate spontaneous blinks from the

raw signal.
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Figure 2.6: The raw signal of a blinkey mainly consisting of voluntary blinks, pupil adap-
tations, and spontaneous blinks.
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As shown in Figure 2.5, the statistical analysis indicates that the time duration of

spontaneous blinks and voluntary blinks is clearly distinct from each other. It is noticed

that the former mostly falls within the range from 0.09 to 0.26 second, while the latter

is between 0.45 and 2.5 seconds. Motivated by this observation, we thus set a detection

threshold at 0.35 second. For a blink whose duration is beyond this value, it is treated

as a voluntary one; otherwise, it is a spontaneous one, which is eliminated from the raw

signal. Meanwhile, it is infeasible to directly set their associated pupil size to 0’s, as it

will pollute the blinkey’s features. Instead, we apply the spline interpolation [286]. As a

common interpolation technique, it estimates missing data using a mathematical function

that minimizes overall surface curvature. In our case, pupil sizes of spontaneous blinks

are treated as the missing data and interpolated accordingly. In this way, we eliminate

spontaneous blinks from the signal while preserving the blinkey features.

2.5.3.2 Decomposition

The goal of decomposition is to extract from the denoised signal user’s blinking

rhythm and segments, which carry knowledge-based features and biometric features of a

blinkey, respectively. The decomposition facilitates the feature extraction next. As shown

in Figure 2.7, a segment is simply the set of non-zero pupil size values between two con-

secutive blinks. A segment reflects the user’s pupil variations after each voluntary blink.

The decomposition is done by detecting all onsets and offsets in a blinkey. Since humans

perform eyelid opening and closure rapidly, it leads to sharp rises and drops in the observed

pupil size. Therefore, the detection of onsets and offsets can be accomplished via simple

edge detection algorithms.
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Figure 2.7: Illustration of decomposition. The input (top) is denoised signals and the output
(bottom) is blinking rhythm and segments.

2.5.4 Feature Extraction

Once blinking rhythm and segments are ready, we are ready to extract from them

desired features.

Knowledge-based features can be directly derived from the blinking rhythm. Specif-

ically, we first obtain the time instances of onsets and offsets, i.e., ααα and βββ . Then, the blink

interval set γγγ and relative interval set ηηη are calculated following their definitions in Section

2.4.2.1.

Biometric features involved in our scheme are classified into time-domain features

and frequency-domain features. For the former, they include SSC, Mean, Median, etc.

They can be computed based on time-series samples from one blinkey entry following

definitions of these metrics. For the latter, they include WAmp, StD, Maximum, etc. As

the first step, we employ FFT to decompose time-domain samples into their constituent

frequencies. The frequency-domain representation can decompose complicated pupil size

variations into periodic components that time-domain analysis cannot realize. FFT is ap-

plied over each segment. Before that, we first employ zero-padding to ensure that each
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segment has the same length of 1024 data points. The reason for choosing 1024 is twofold.

First, FFT works most efficiently for a signal with length a power of 2 since it recursively

folds the size at each step. Second, we observe from the 1306 collected samples that all

segments last within 5 seconds. Given the sampling rate as 200 Hz in our system, every

segment is sampled into 1000 data points the maximum. Based on the above discussion,

we pad the segment into 1024 data points. Once the Fourier coefficients are derived for

each segment, we take their average over all segments for each frequency component. It

then produces the Fourier coefficient feature φφφ . Frequency-domain statistical features are

computed following a similar method for time-domain statistical features.

2.5.5 Classification

Once features of a blinkey are extracted following previous steps, the remaining task

is to apply classification methods for user authentication, i.e., to discriminate the legitimate

user and imposters. Two common classification methods are considered, one-class Support

Vector Machine (SVM) and K-Nearest Neighbors (k-NN). To determine which one best

serves our system, we conduct comprehensive evaluations based on our dataset consisting

of 1306 blinkeys from 52 volunteers. These volunteers are all college students, including 36

females and 16 males. The classification performances are examined through the following

metrics.

• False Rejection Rate (FRR). The probability that a legitimate user is rejected by the

system. It is calculated as the ratio of the number of a legitimate user’s incorrect

authentications to the total number of attempts.

• False Acceptance Rate (FAR). The probability that an impostor is given access, com-

puted as the ratio of the number of an impostor’s authentication attempts that are

accepted by the system to the total number of attempts.
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• Equal Error Rate (EER). The point at which FRR and FAR are equal, by adjusting

parameter values.

Note that FRR reflects the user convenience in our system; a lower FRR implies that a

legitimate user can successfully unlock the VR device at a higher probability. FAR reflects

the security aspect; a lower FAR implies that the imposter will be denied at a higher prob-

ability. It is worth noting that two blinkeys are deemed different with different lengths.

For example, if the legitimate blinkey has a length of 6, then any testing input with a dif-

ferent length will be rejected immediately. Hence, in the following we only focus on the

classification over blinkeys of the same length.

To investigate the performance of BlinKey, we performed two user studies. In phase

I, the objective is to collect blinkeys created by different users so as to carry out statistical

analysis and classification model selection as discussed here. In phase II, a prototype of

BlinKey is built. We then conduct a series of in-field experiments to evaluate the security

and utility of our system which will be covered in the next section.

In the phase-I user study, a specialized app is developed and implemented on the

VR system to facilitate the data collection. A total of 52 volunteers are recruited. They

are all college students aged from 18 to 35. Among them, there are 36 females and 16

males. Their demographic details are provided in Table 2.3. Before the data collection,

they are explained how BlinKey works. Each volunteer is asked to design several different

blinking patterns. For each pattern, a video of the volunteer’s pupils is recorded by an eye

tracker in the VR headset. Afterwards, they are shown the detected pupil size signal and

are asked to manually mark the voluntary blinks from the spontaneous blinks according to

their self-designed patterns. In total, we obtain 1306 samples containing 7,528 voluntary

blinks and 3,673 spontaneous blinks. The collected dataset is used to derive statistics of

blinkeys. Besides, we also aim to identify suitable parameters for the classifier.

25



Table 2.3: Demographics of volunteers in the phase-I study.

Gender No. Age range No. Eye color No. Eye wear type No.

Female 36 18-23 19 Black 29 None 25
Male 16 24-29 28 Brown 14 Colorless glasses 21

30-35 5 Hazel 8 Colorless contact lenses 4
Green 1 Colored contact lenses 2
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Figure 2.8: FRR and FAR under different training sample sizes. (a) One-class SVM. (b)
One-class k-NN.

2.5.5.1 Support Vector Machine

One-class SVM has been successfully applied to a number of classification problems.

It generalizes the idea of finding an optimal hyper-plane in high-dimensional space to per-

form classification. Compared to other classification methods, it has advantages in imple-

mentation simplicity and efficiency in dealing with high-dimensional, non-linear datasets.

Here, one-class SVM is implemented with the Radial Basis Function (RBF) kernel.

The number of training samples is an important indicator of classification perfor-

mances. We tune the value from 2 to 10 and evaluate its impact. Figure 2.8(a) shows the

authentication accuracy with respect to the training sample size. We observe that the FRR

is as high as 50.5% with only 2 training samples. It drops quickly to 14.6% under 6 training

samples. It mildly decreases to 12.6% as the training sample size grows to 10. The FAR

grows from 10.3% with 2 training samples and keeps relatively stable around 15.0% as the

training sample size increases to 10. The minimum EER 14.6% is achieved with 6 training

samples.
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We further evaluate the performance of SVM with respect to the kernel coefficients

γ and ν in Figure 2.9. Here, γ is the standard deviation of the kernel function. It influences

the decision boundary qualitatively. As γ grows, FAR increases while FRR decreases,

which means both legitimate users and impostors are more likely to get authenticated. In

fact, for a larger γ , the decision criteria tend to be relaxed to avoid the hazard of overfitting.

For a smaller γ , the decision boundary tends to be strict and sharp. In contrast to the former

situation, it tends to overfit. The parameter ν is an upper bound on the fraction of margin

errors and a lower bound of the fraction of support vectors relative to the total number of

training samples. For example, ν=0.01 means that at most 1% of the training samples are

misclassified (at the cost of a small margin, though) and at least 1% of the training samples

are support vectors. Hence, as shown in Figure 2.9, a larger ν leads to a lower FAR but

at the cost of a higher FRR. Combining the results above, EER reaches its lowest point

at 14.6% when training sample size, γ , and ν are set to 6, 0.018, and 0.028, respectively.

Hence, one-class SVM produces unsatisfactory authentication accuracy in our system.

2.5.5.2 K-Nearest Neighbors

Another classification method under consideration is k-NN. It measures the similar-

ity between the testing sample and training samples. The similarity is represented by the

Manhattan distance. If the score is below the threshold, the testing sample is considered a

legitimate input; otherwise, it is an outlier.

We first examine the classification accuracy with respect to the training sample size.

As shown in Figure 2.8(b), both FRR and FAR decreases with a larger training sample

size. The detection accuracy improvement becomes insignificant, with 6 or more training

samples. To balance between accuracy and usability, we use 6 samples to train the model.

Comparing between Figure 2.8(a) and Figure 2.8(b), we find k-NN produces a much lower
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Figure 2.9: FRR and FAR with respect to γ and ν under one-class SVM.

error rate. Given 6 training samples, EER of SVM and k-NN is 14.6% and 4.0%, respec-

tively. The latter is less than 1/3 of the former.

We then investigate the impact of two critical parameters, k, the number of neighbors

to select, and α , the threshold from the Manhattan distance matrix. A larger k indicates that

more neighbors are taken into the calculation of the classification score. A larger α means a

testing sample is more likely to be accepted legitimate. The results demonstrated in Figure

2.10 meet our expectations. A larger α , i.e., a loose detection rule, results in lower FRR

but a higher FAR. As we increase the value of k, the classification becomes more stable

due to majority voting/averaging, and thus, is more likely to make more accurate detection.

Nonetheless, as k is beyond a certain value, we will witness an increasing number of errors

as the value of k is pushed too far. As shown in Figure 2.10, the lowest EER exists at 4.0%

with k = 3 and α = 1.0.

28



Figure 2.10: FRR and FAR with respect to α and k under one-class k-NN.

2.5.5.3 Other Classifiers

We further examine the classification accuracy of convolutional neural networks

(CNN) and random forests (RF) in the latest version. Specifically, one-class CNN and one-

class RF are considered. The former is based on CNN for one-class classification problems.

Its idea is to use a zero centered Gaussian noise in the latent space as the pseudo-negative

class and train the convolutional network using the cross-entropy loss to learn a good repre-

sentation and the decision boundary for a given class [200]. CNN has been widely applied

to computationally complex classification tasks, such as image defect detection [308] and

face verification [199]. One-class RF is a method based on a random forest algorithm and

an original outlier generation procedure that makes use of classifier ensemble randomiza-

tion principles [74]. The basic idea is to to use some randomization principles of ensemble

learning methods to sub-sample the number of features and the number of training target

instances to make possible the generation of outliers from the computation perspective, and

to make use of the information given by the target samples to adapt accordingly the outlier

distribution. Compared to CNN, it is faster to perform and requires fewer data samples.
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As shown in Figure 2.11, given the same training sample size, k-NN achieves the

lowest FRR and FAR among the four classifiers, while CNN and RF exhibit the worst per-

formance. This is because the latter two generally require a large dataset to properly train

their models. An empirical implication indicates that it typically takes at least 5,000 sam-

ples to train CNN with 10 or more layers and hundreds of neurons for satisfying accuracy

in applications like image classification. Similarly, the training sample size is around 500

to train RF for relatively good performance in a classification problem. On the other hand,

only 6 samples are needed for k-NN to obtain EER as low as 4.0%. It indicates that k-NN

attains a promising authentication accuracy with much fewer training samples, especially

compared with CNN and RF. Besides, with simple structures, k-NN and SVM consume

fewer computation resources for training and testing than the other two. Thus, they are

deployable to a wide spectrum of VR devices with heterogeneous resource capacities.

2 3 4 5 6 7 8 9 10

Training sample size

0

25

50

75

100

F
R

R
(%

)

SVM k-NN CNN RF

(a) FRR

2 3 4 5 6 7 8 9 10

Training sample size

0

15

30

45

60

F
A

R
 (

%
)

SVM k-NN CNN RF

(b) FAR

Figure 2.11: Authentication accuracy comparison among four classifiers.

To sum up, k-NN outperforms SVM, CNN, and RF in terms of classification accu-

racy, given the same training sample size in our case. More importantly, our design acquires

limited training samples, as few as 6. Hence, the enrollment of a blinkey can be performed

efficiently. Besides, our approach also outperforms [185, 311], two recently proposed user
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authentication schemes for VR devices, in terms of authentication accuracy. For [185], its

EER is 7.4%. For [311], its EER is 6.9%. Both are higher than ours.

2.6 Performance Evaluation

2.6.1 Prototype Implementation & Experiment Setup

As a proof-of-concept implementation, we develop the prototype of BlinKey on an

HTC Vive Pro head-mount device, connected to a local server3 running SteamVR to sup-

port the VR environment. We install a Pupil Labs eye tracker in the VR device to record the

real-time pupil size. The sampling rate is set to 200 Hz, i.e., pupil size samples are collected

every 5 milliseconds. The collected data are fed into the server through ZeroMQ applica-

tion program interface (API). All the functions, such as start/end detection, pre-processing,

feature extraction, and classification, are implemented in Unity, a cross-platform engine for

VR games. As observed in Section 3.3.3, k-NN yields better accuracy than SVM in our

system. Hence, we implement the former as the classifier in our prototype. The training

sample size is set to 6, which means a user is asked to enter her blinkey 6 times in the

enrollment phase. We set the parameters k as 3 and α as 1.0, since the k-NN demonstrates

the best authentication accuracy with this setting. For comparison purposes, we also imple-

ment the basic PIN and pattern lock authentication schemes on the same VR device. Their

corresponding passcodes are entered using controllers paired with the device.

To evaluate the security and usability of BlinKey, another 43 participants are recruited

to conduct experiments. Among them, 13 volunteers also participated in the prior data col-

3The local server is a typical arrangement for the tethered VR headset, which our prototype device HTC

Vive Pro belongs to. The local server is not a required element for BlinKey. Although our prototype makes

use of the local server to do classification, the computation load is pretty light. Instead of any resource-

demanding classification models, such as neural networks, BlinKey employs the light-weight k-NN. Thus,

the computation can be practically supported on standalone VR devices with on-board computing units.
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Table 2.4: Distribution of volunteer information.

Gender No. Age No. Eye color No. Eye wear type No. Experience No.

Female 16 18-23 15 Black 20 None 23 None 25
Male 27 24-29 26 Brown 18 Glasses 17 Limited 14

30-35 2 Hazel 3 Colorless lenses 2 Proficient 4
Blue 2 Colored lenses 1

lection session. The distribution of the participants’ information is shown in Table 2.4. At

the beginning of the experiment, the basic idea of BlinKey is explained to the participants.

They are then trained on how to correctly enter a blinkey. Thereafter, they are asked to

create their own blinkeys.

Screenshots of the user interface (UI) of our prototype are shown in Figure 2.12. UI

is implemented in a virtual scene in Unity and displayed in the VR headset to guide users

for enrollment and authentication. For the blinkey enrollment, we follow the basic steps of

how an iPhone enrolls a user’s fingerprints. Specifically, when legitimate users boot their

new VR devices for the first time, they are guided to the process of account setting. As

one of the steps, users are prompted to enroll their blinkeys (see Figure 2.12(a)). Users

are asked to enter their blinkeys repeatedly until 6 valid samples have been collected (see

Figure 2.12(b)). If a user tends to enroll another blinkey, the user is first required to provide

the existing blinkey correctly. Then the rest steps similarly follow the ones for the initial

account setup. The authentication is automatically triggered as a user puts on the VR

headset, initiates an online purchase, or tries to log into her Internet account. A dialog box

pops up, asking the user to enter her valid blinkey (as shown in Figure 2.12(c)). Based on

the input, the classifier decides whether this entry is from the legitimate user: if yes, the

access is granted (see Figure 2.12(d)); otherwise, the access is denied with an error message

shown on the screen (see Figure 2.12(e)). If denied, a user can re-enter her blinkey until

32



reaching the maximum number of attempts allowed, say 5. Then, the account is temporarily

locked, and the recovery process is invoked (see Figure 2.12(f)).

(a) Account settings (b) Enrollment (c) Authentication

(d) Success (e) Failed (f) Locked out

Figure 2.12: Screenshots of UI for BlinKey.

2.6.2 Robustness Against Attacks

The adversary’s goal is to impersonate a legitimate user and successfully get authen-

ticated to the VR device. We assume that the adversary has physical access to the device. In

practice, such physical access can be gained in ways such as a thief stealing a device, find-

ers finding a lost device, and a roommate temporarily accessing a device when the owner is

taking a shower. In the experiment, we consider the following types of attacks: zero-effort

attacks, statistical attacks, shoulder-surfing attacks, and credential-aware attacks.
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Table 2.5: Success rate of zero-effort attacks under different blinkey lengths.

Blinkey length 3 4 5 6 7 8 9 10

FAR (%) 8.1 4.4 3.4 1.9 0 0 0 0

2.6.2.1 Zero-effort Attacks

Zero-effort attacks may be the most common type of attacks against an authentication

system, where the attacker guesses the secret or tries the authentication procedure without

much knowledge of the legitimate password. In our case, each volunteer (attacker) is asked

to randomly pick blinkeys without any prior knowledge of the legitimate one and tries to

pass the authentication by chance. Up to five authentication attempts can be made. An

attack is considered to succeed if any one of them passes the authentication.

Table 2.5 shows the success rate of zero-effort attacks, which is directly the FAR of

our mechanism. Among 1306 collected blinkeys, all of them have the length between 3

and 10. Hence, we conduct tests over blinkey with their lengths falling within this range.

Clearly, the blinkey length plays a critical role in the success rate of zero-effort attacks. The

longer a blinkey is, the less possible it can be compromised by an adversary. Particularly,

if the length is 7 or longer, the success rate drops to zero. Therefore, in the practical

implementation of BlinKey, the system can impose a hard constraint over a valid blinkey’s

minimum length, say 7, to defeat zero-effort attacks.

2.6.2.2 Statistical Attacks

This type of attack assumes that the adversary has access to a abroad set of user’s

blinkeys. This type of attackers employ knowledge obtained from the statistics of a group of

blinkeys as hints to generate authentication attempts. The basic approach is to estimate the

feature distribution and then use the most probable feature values to generate the forgery.
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Figure 2.13: Probability distributions of knowledge-based features.

In the experiment, we use the 1306 collected blinkey samples and produce a set of forgery

blinkeys as follows. We first randomly select a length following the probability distribution

of all blinkey lengths, as illustrated in Figure 2.13(a). Then we randomly choose values for

each eye blink and open following their probability distributions derived from our dataset.

Figure 2.13(b) and Figure 2.13(c) depict these two distributions. Finally, a set of 150

forgery blinkeys is generated in this process.

Table 2.6: Success rate of statistical attacks under different blinkey lengths.

Blinkey length 3 4 5 6 7 8 9 10

FAR (%) of statistical attacks 5.2 6.4 2.8 2.4 1.8 0 0 0

An attacker is randomly assigned multiple forgery blinkeys and tries to get authenti-

cated by repeating them. Hence, attackers use their own pupils and thus biometric features

to launch the attack. Table 2.6 shows the success rate, i.e., FAR, of statistical attacks of

BlinKey. The attacker’s success rate drops to 0 for blinkeys when their lengths reach 8. No-

tably, statistic analysis does not grant the attacker much privilege over zero-effort attacks.

We further the variation pattern of BlinKey, specifically, the rhythm pattern distri-

bution of blinkeys (without considering the biometric features) based on our dataset. Its

purpose is to examine if users tend to choose similar blinking rhythms which would render
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the scheme vulnerable to statistical attacks. As shown in Table 2.7, we list the top-13 most

frequently used blinkeys by analyzing 1306 valid enrollments in the dataset. 11 of them are

the same, indexed as #1 blinkey, with their frequency calculated as 2.1%. Besides, there

are also duplicates for #2–#10 blinkeys, with their occurrence frequencies as 1.5%, 0.9%,

0.8%, 0.6%, 0.6%, 0.4%, 0.4%, 0.4%, and 0.4%, respectively.

Table 2.7: Frequency of blinkeys from collected dataset.

Index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Frequency 2.1% 1.5% 0.9% 0.8% 0.6% 0.6% 0.4% 0.4% 0.4% 0.4%

It implies that users are less likely to choose the same blinking pattern. There-

fore, attackers can barely obtain useful information from the statistic analysis over a set of

blinkeys. We acknowledge that our dataset is limited in its size, with only 1306 blinkeys.

Still, our analysis partially reflects the blinking pattern distribution in practice. Compared

with regular digit-PIN and password, a blinkey can be characterized by a more rich set of

features, including tapping time instances, tapping intervals, relative intervals, and even

pupil size variations. All these factors make BlinKey robust against statistical attacks.

We further visualize in Figure 2.14 the most frequently adopted blinkey patterns that

are presented in Table 2.7. As shown, the patterns that exhibit uniform rhythms (#1, #2,

#4, #7, and #8) or symmetric rhythms (#5, #6, #9, and #10) are more likely to be adopted.

Such a phenomenon is also observed in PINs; the commonly picked PINs include 000000,

010101, etc., which share similar properties above. Note that Blinkey is a two-factor user

authentication that also involves biometric features. Hence, it effectively avoids PIN and

password pitfalls caused by popular credential selections.
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Figure 2.14: Visualization of the top-13 frequently selected blinkey patterns.

2.6.2.3 Credential-Aware Attacks

A credential-aware attack is when the adversary has the full knowledge of the blink-

ing rhythm of a blinkey. Therefore, it can extract all the knowledge-based features, includ-

ing blink time instances, blink intervals, and relative intervals. To launch this type of attack,

we provide the attacker all the above-mentioned information regarding victim blinkeys. As

discussed in statistical attacks, it is unlikely for the adversary to reproduce the legitimate

user’s biometrics. Likewise, to launch credential-aware attacks against PIN and pattern

lock, adversaries are informed with details of victim PINs and drawing patterns. Based

on this information, the attacker tries to gain access to the system. Table 2.8 compares

the success rate against three types of authentication schemes. While PIN and pattern are

compromised, BlinKey effectively resists the attack. This is because BlinKey also involves

biometric features, which are hard to mimic, in addition to credentials. Meanwhile, we also

notice that the leakage of credentials does provide attackers advantage in compromising the

system. For instance, given the length of 7, the attacker’s success rate is 0 under zero-effort

attacks, while it increases to 14.2% under credential-aware attacks. This result indicates

that biometric features alone, i.e., pupil size variations, cannot deliver satisfactory security

performance. Luckily, the success rate against BlinKey is merely 4.4% when the length is

10. Therefore, one viable solution to defend credential-aware attacks is to adopt a longer

blinkey. As a note, the length of a pattern lock is defined by the number of points a user

draws through. For instance, the length of a “Z” pattern (1-2-3-5-7-8-9) is 7.
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Table 2.8: Success rate of credential-aware attacks on BlinKey, PIN, and pattern lock.

Length 3 4 5 6 7 8 9 10

BlinKey 16.6% 25.4% 19.7% 15.5% 14.2% 10.6% 7.9% 4.4%
PIN 100% 100% 97.1% 100% 100% 100% 100% 100%

Pattern lock 100% 100% 100% 100% 100% 99.3% 97.1% 96.8

2.6.2.4 Shoulder-Surfing Attacks

Shoulder-surfing attacks are another general type of attacks against an authentication

system, in which the adversary obtains authentication information via visual observation.

It is more severe towards PIN/password/pattern authentication on VR devices than regular

personal devices. Because the victim’s vision is blocked by the headset, they are unaware

of the surrounding environment, including the presence of shoulder-surfing attackers. We

randomly pick 22 out of 43 participants involved in the phase-II user study and group them

into 11 pairs. Each of them was told to replay his/her partner’s passcode. Firstly, one user of

the pair acts as an attacker, the other as a legitimate user, and then the roles are exchanged.

During the experiment, the legitimate user repeats the same passcode for three times with

a pause in between. Then, the attacker watches the entire process and tries to reproduce

it. Every attacker makes three access attempts. The attacker is considered a success in a

shoulder surfing if any one of the five trials passes the authentication.

Figure 2.15(a) plots the FAR, i.e., attacker’s success rate, of BlinKey, PIN, and pattern

lock with respect to its distance to the legitimate user. When the distance is 0.5 m, the

success rate toward PIN and pattern lock is 23.9% and 29.8%, respectively, while that

toward BlinKey is merely 4.9%. This is intuitive, as a shorter distance enables the attacker

to have a closer observation over the legitimate user’s login. Thus, it has a better chance to

correctly replay the knowledge-based secret. On the other hand, it is hard, if not impossible,

for the attacker to observe the user’s eyes in a VR headset. Besides, as BlinKey involves
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biometric features, it is extremely challenging for an attacker to repeat such information. It

also explains why FAR keeps almost unchanged as the distance gets longer. Figure 2.15(b)

shows the success rate of should-surfing attacks with respect to the length of blinkey, PIN,

and drawing pattern. Again, BlinKey has the best performance among the three. When

the length is 8, FAR of BlinKey is 0, i.e., no adversary successfully launches shoulder-

surfing attacks, while the value for PIN and pattern lock is 14.1% and 17.0%, respectively.

Interestingly, unlike BlinKey, PIN and pattern lock become more vulnerable to shoulder-

surfing attacks with a larger length. One possible explanation is that a longer key provides

the attacker more information about the relative button positions to better infer the keypad

structure.
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Figure 2.15: Success rate of shoulder-surfing attackers against BlinKey, PIN, and pattern
lock.

The phenomenon that the success rate of shoulder-surfing attacks is non-zero is at-

tributed to two reasons. First, while it is hard to launch the shoulder-surfing attack, the

attacker can still guess the secret, i.e., zero-effort attack, even without much insight. As

shown in Table 2.5 in the paper, its success rate is 8.1% when a blinkey has a length of

only 3. Second, while k-NN exhibits promising authentication accuracy, it is imperfect.

As shown in Figure 2.10, the lowest EER (where FAR=FRR) exists at 4.0%. It indicates

that there is still certain possibility that an illegitimate blinkey is wrongly classified as a
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legitimate one. On the other hand, a close observation over an user’s login process does

provide the attacker some marginal advantage. For example, a couple of volunteers tend to

nod their heads subconsciously following the same rhythm as they blink. This advantage

diminishes quickly as the attack-victim distance increases.

2.6.3 Usability

Apart from security, usability is another critical criterion to evaluate a user authen-

tication scheme. We measure the usability of BlinKey from aspects of time consumption,

legitimate recognition, memorability, and impact of user motions.

2.6.3.1 Time Consumption

We examine the enrollment time and login time needed for BlinKey. Specifically, the

former refers to the total duration required to enroll all samples to train the classifier, while

the latter is the total duration for a user to enter a test blinkey and for the system to make an

authentication decision. The distributions of enrollment time and login time are depicted

in Figure 2.16(a) and Figure 2.16(b), separately. We observe that the enrollment time of

BlinKey ranges from 40.8 to 63.5 seconds. Its average, median, and 90-th percentile are

49.5 seconds, 42.9 seconds, and 61.1 seconds, respectively. The login time spans from 7.3

to 11.7 seconds, with its average, median, and 90-th percentile as 9.6 seconds, 8.9 seconds,

and 11.2 seconds, respectively. Therefore, the most time-consuming part is the enrollment

phase. Luckily, the enrollment only needs to be performed once for a user. Hence, its time

consumption is still reasonably practical. The authentication time of our scheme is shorter

than many existing solutions, such as [45, 221]. It takes 17 and 60 seconds to authenticate

a user in [45] and [221], respectively. Besides, as shown in Table 2.4, only 4 out of 43

volunteers had the experience of performing authentication in a VR device before. This

factor partially accounts for the time overhead in our result. We thus optimistically project
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that as users get more familiar with BlinKey, the enrollment and login time should be further

reduced.

The blinks indicating the start and end of a blinkey have been taken into account for

the measurement of both the enrollment time and login time in the evaluation. Specifically,

5 seconds out of the login duration (with the 90-th percentile as 11.2 seconds) are attributed

to this overhead. As our future work, we plan to propose efficient approach to indicate the

start/end of a blinkey with reduced overhead.

2.6.3.2 Login Attempts

This metric measures how many login attempts a legitimate user needs to unlock the

device. A fewer number of attempts are desirable for an authentication scheme with high

usability.

93.3% of blinkeys can be successfully authenticated in the first attempt, while this

value for PIN and pattern lock is 83.2% and 72.5%, respectively. This is because users

make mistakes more often in selecting the correct key or drawing the correct line on a

virtual keyboard with the controllers. In contrast, the entering of blinkeys is performed by

blinking eyes without interacting with the controller. It only takes 1.09 attempts on average

for a legitimate user to get authenticated in BlinKey.

40 45 50 55 60 65

Time (s)

0

0.5

1

C
D

F

(a) Distribution of enroll-
ment time

7 8 9 10 11 12

Time (s)

0

0.5

1

C
D

F

(b) Distribution of login
time

1 2 3 4 5

Login attempts

0

0.2

0.4

0.6

0.8

1

P
er

ce
n
ta

g
e BlinKey

PIN

Pattern

(c) Login attempts

Sta. Eye.Hea. Str.

User motions

0

10

20

30

F
R

R
 /

 F
A

R
 (

%
)

FRR

FAR

(d) Impact of user mo-
tions

Figure 2.16: Evaluation of usability of BlinKey.
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Table 2.9: The recall rate after a period of time.

Duration between stage-I and -II No. participants No. successes Success rate

7 days 29 26 89.6%
14 days 15 12 80.0%

2.6.3.3 Memorability

Memorability demonstrates how well a secret key can be remembered by its owner,

especially after a long period. To evaluate the memorability of BlinKey, we designed two

follow-up experiments. The participants are invited to perform their blinkey after 7 days,

and 14 days and test if they can successfully get authenticated. Out of the 45 volunteers who

joined in the first-stage experiment, 29 and 15 of them participated in the two second-stage

experiments, respectively. As shown in Table 2.9, 26 out of 29 volunteers are able to recall

their blinkeys successfully after 7 days and 12 out of 15 volunteers are able to recall their

blinkeys after 14 days. While the memorability performance of BlinKey is far from perfect,

we would like to note that most of the volunteers may not have the chance to practice their

blinkeys during 7 days, unlike regular passwords or digit-PINs that are entered to personal

devices multiple times a day. We believe the performance will be enhanced with more

frequent practices.

2.6.3.4 Impact of User Motions

In practical scenarios, users are not always sitting statically while entering a blinkey.

Rather, they may be rotating their eyes, moving their heads, or even walking. An ideal

system should be capable of handling these situations. In the experiment, we investigate

whether user motions impact the performance of BlinKey. Four different types of motions

are considered, sitting, rotating eyes, moving head, and strolling. We observe in Figure

2.16(d) that the best accuracy is achieved when the user is sitting, with its FRR at 8.1%
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and the FAR at 8.0%. The lowest accuracy is observed when the user is rotating eyes,

with the corresponding FRR at 16.9% and FAR at 10.2%. This is because eye movement

prevents the eye tracker to accurately estimate real-time pupil size. Nonetheless, neither

head movement nor strolling causes significant performance degradation. Besides, we also

observe that FAR is relatively stable across all motion status. It means the authentication

security is not deteriorated much by motions. Based on the above observation, users will

be recommended to enter blinkeys by looking into the virtual screen to prevent significant

eyeball movement. There will be no restriction on their body movement, though.

2.6.4 Survey Results

In addition to the experiments, we further evaluate BlinKey via survey. The pre-

survey was conducted after the introduction of the basic idea of BlinKey and before the

experiment, while the post-survey is conducted after all experiments. Volunteers are asked

to rate BlinKey from the perspectives of security and usability and compare them with

commonly used methods on mobile devices, including PIN, password, and pattern lock.

Questions include 1) Is it safe against attacks being tested? 2) Is it easy to perform and

remember? On a 10-point Likert scale (1 = strongly disagree; 10 = strongly agree), partic-

ipants pick a point that they deem proper. Survey results are shown in Figure 2.17. Most

volunteers agree that BlinKey is better than the other three listed authentication methods

in both aspects. It is worth mentioning that many participants rate BlinKey a higher score

in the post-study than in the pre-study, which suggests that our scheme outperforms user’s

expectations.

2.7 Discussions

Raw size of BlinKey space. BlinKey is a two-factor authentication, a combination

of the rhythm passcode and human biometrics, i.e., variations of pupil size. Since the
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(a) Security

(b) Usability
Figure 2.17: Pre-/Post-study survey results regarding security and usability.

variability brought by biometric features is hard to quantify, we would like to discuss the

key space of BlinKey merely taking into account the variability introduced by blinking

rhythms. Thus, the real key space of BlinKey should be no less than this value.

BlinKey adopts a similar design of the rhythm passcode as a prior work [118]. We

thus revise the theoretical result of [118] and derive the key space of BlinKey.

Theorem 1. (Revised from Theorem 5.1 of [118].) The size of BlinKey’s key space is

|Π|=
Lmax

∑
l=1

(Tmax
σ
− ( τb

σ
−1)× l− ( τs

σ
−1)× (l−1)

2l−1

)
,
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where Lmax, Tmax, σ , τb and τs stand for the maximum blinkey length, corresponding

maximum time duration, the system clock unit, minimum value of an onset-offset duration

and minimum value of a offset-onset duration, respectively.

For an illustration purpose, we let σ = 5 ms, which is the time unit for Pupil Labs eye

tracker’s system clock. According to the statistic analysis over our collected dataset, we set

the rest parameters as Tmax = 12 s, τs = 0.15 s and τb = 0.10 s. Thus, when the blinkey

length is 6, the corresponding space size is about 1023. As a reference, the key space for a

regular PIN with 6 digits is 106. The above theorem is derived without considering pupil

size variation. With the introduction of an additional dimension of entropy, the key space

of BlinKey should be further enlarged.

Practical design. Our design grants the user some error tolerance–when a legiti-

mate user fails to authenticate, she can re-enter her blinkey until the maximum number of

attempts is reached. In this case, the user is temporarily locked out, and the recovery pro-

cess is invoked (see Figure 2.12(f)). Here are two classic recovery methods widely adopted

by other user authentication schemes. 1) Provide an alternative way to authenticate users;

when a legitimate user fails to authenticate herself with her blinkey, she can still unlock

the device by entering a valid passcode or digit-PIN. 2) Have a remote server to send a

recovery code to the user’s previously authorized email address; the user retrieves the code

by accessing the email and unlocks the device by entering the code. These two approaches

are deemed robust against attacks.

When an adversary tends to enroll himself in the device, he needs to first enter a

valid blinkey, which has been created by the legitimate user earlier, to unlock the device.

Otherwise, there is no way for the adversary to enroll himself. This idea has been adopted

in many personal devices, such as smartphones and PCs. There is also an exception that the

victim VR device has not been secured with any user authentication scheme. In this case,

the adversary can directly set up his account associated with his blinkey in the device. To
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address this issue, a conventional solution is to enforce the user to enroll her authentication

credentials, i.e., blinkey here, during initial account setup.

Impact of environment. User’s pupil size is affected by their biophysical status,

such as mood, energy level, whether drinking alcohol, illness, etc. Consequently, these fac-

tors would impair the authentication accuracy of BlinKey. One viable solution is to further

deploy a second-option user authentication method, such as digit-PIN or password. Once

a legitimate user’s input cannot be recognized by the system by any chance, including the

above-mentioned situations, she can always unlock the device by a valid digit-PIN. Such an

idea has been adopted by current fingerprint-/facial recognition-based user authentication

on smartphones. While the brightness of the display does affect pupil size when blinking,

it does not necessarily impact the performance of our scheme. As shown in Figure 2.12(c),

the screen displays the same image with the same brightness/color/content during the login

process. Thus, it eliminates the impact from the display.

Reduce login overhead. Under the current design, the login duration of BlinKey

spans from 7.3 to 11.7 seconds, with its average, median, and 90-th percentile as 9.6 sec-

onds, 8.9 seconds, and 11.2 seconds, respectively. While this overhead is reasonably prac-

tical, it is still longer than conventional PIN and password. The most significant portion of

the overhead is attributed to the blinks indicating the start and end of a blinkey, i.e., 5 sec-

onds according to the setting. As our future work, we plan to propose efficient approach to

indicate the start/end of a blinkey with reduced overhead. Besides, as shown in Table 2.4,

only 4 out of 43 volunteers had the experience of performing authentication in a VR device

before. This factor partially accounts for the long time overhead in our result. The login

time would be further reduced as users get more familiar with authenticating themselves

via BlinKey in VR.
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2.8 Conclusions

As VR devices are increasingly weaved into our everyday life, providing security to

the data acquired by or accessed through these devices becomes critically important. In

this study, we develop a two-factor user authentication mechanism, named BlinKey, which

employs the user-designed blinking rhythm and unique biometrics exhibited in pupil size

variation to fingerprint legitimate users. Compared to prior work, our solution delivers se-

cure authentication, incurs low cognitive overhead, and offers great convenience. Through

an extensive evaluation that involves 52 volunteers, we observe that the average EER is

as low as 4.0% with only 6 training samples. The proposed BlinKey is also implemented

on an HTC Vive Pro with a Pupil Labs eye tracker. We further measure its security by

testing robustness against various types of attackers, and its utility, from aspects of time

consumption, login attempts, the impact of user motions, and memorability. We observe

that BlinKey requires relatively long enrollment time (median: 42.9 seconds). One reason

is that many participants have limited experience in authenticating themselves on VR de-

vices. This is likely to be alleviated as users practice it multiple times daily after scheme

implementation. Besides, as enrollment is only executed once for each blinkey, the long

enrollment time will not incur noticeable overhead from a long-term view. In conclusion,

we believe BlinKey is a practical authentication method applicable to current VR devices.
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CHAPTER 3

SOUNDLOCK: A NOVEL USER AUTHENTICATION SCHEME FOR VR DEVICES

USING AUDITORY-PUPILLARY RESPONSE

3.1 Introduction

Motivation. The rapid development of virtual reality (VR) has been seen in the past

few years with a consistently growing popularity. According to a recent report [217], the

VR market is around $28 billion in 2022; by 2030, the number is forecast to reach over

$87 billion with a constant annual growth rate of 15%. With the capability of providing

an immersive and interactive experience, VR has revolutionized gaming and entertainment

and permeated a variety of applications, including e-commerce, education, healthcare, and

military [261]. For example, retailers can bridge physical and online stores via VR to pro-

vide an immersive shopping experience for customers [168]; medical practitioners may

communicate with patients in a VR environment for remote diagnosis [177]; military ac-

tions can be simulated and practiced in a virtual battlefield [159]. In the above applications,

tremendous amounts of sensitive data are collected, processed, and stored on VR devices,

such as customers’ credit card information, patients’ health status, and military secrets. Ad-

versarial access to VR devices would cause data breaches and other critical consequences.

Therefore, implementing user authentication mechanisms in VR is a crucial step in resist-

ing unauthorized access.

However, user authentication on VR devices is still at the infant stage. Current so-

lutions, including passwords, digital PINs, and pattern locks, mostly follow conventional

approaches for general personal devices. Users have to use some external hand controllers

to enter the credentials. They have been criticized for the usability deficit: It takes users

48



substantial effort to select correct keys from the virtual keyboard using the controller [248].

What’s worse, they are shown to be vulnerable to shoulder-surfing attacks. As the user en-

ters her credential, the hand movement leaves a trajectory that can be easily mapped to the

entered secrets with the keyboard layout [99, 248, 314]. Per the statistics from prior work

[99], the success rate of shoulder-surfing attacks towards PINs and drawing patterns in VR

is as high as 18%.

To address the above issues, great efforts have been devoted to exploring practical

alternatives. Existing approaches can be generally categorized into the following classes:

knowledge-based methods [94, 98, 99, 170, 305], physiological biometrics [19, 55, 155,

234], behavioral biometrics [162, 185, 204, 237, 311], token-based methods [48], and a

mixture of above [169, 297, 314]. Among them, physiological biometrics attract the most

attention due to its high usability and authentication accuracy. Nonetheless, its wide de-

ployment is still faced with several challenges. First, to access the user’s biometrics, such

as electroencephalogram (EEG), electrocardiogram (ECG), electromyography (EMG), and

iris patterns, dedicated and costly sensors are needed. These sensors are mostly unavailable

in current VR headsets. While iris scans have been deployed on HoloLens 2, a high-end

augmented reality (AR) device costing at least $3,500, they are less likely to integrate into

an even broader set of medium-/low-end terminals with much lower budgets. Second, most

physiological biometrics are irrevocable. Once a biometric credential is compromised or

stolen, it cannot be reset. This property is also called cancelability.

Our approach. In this paper, we propose to leverage a new kind of biometric,

auditory-pupillary response, for user authentication on VR headsets. By presenting users

with auditory stimuli, the pupil’s reaction, in the form of size changes, is universally ob-

servable among human beings [27, 113, 171, 186, 269]. The auditory-pupillary response

is an autonomic reflex that dilates or constricts the pupil, mediated by the sympathetic and

parasympathetic nervous systems, which are both parts of the autonomous nervous system.

49



The biological uniqueness in the complex neural pathways and structure of iris muscles

present particular features that make it possible to explore auditory-pupillary responses for

user identification. As validated in our preliminary study (see Section 4.4), inter-subject

pupillary responses exhibit distinguishable patterns under the same stimulus, whereas intra-

subject pupillary responses are consistent in multiple trials. These observations motivate

us to develop SoundLock, a novel reflex physiological biometric authentication method for

VR devices based on the auditory-pupillary response. During authentication, carefully de-

signed auditory stimuli are rendered to the user via the VR device’s audio channel. The

corresponding pupillary response is captured by the eye tracker integrated into the device.

The user’s legitimacy is then determined by comparing the response with the template gen-

erated during the enrollment stage.

Compared with conventional authentication methods for VR, such as passwords, dig-

ital PINs, and drawing patterns, our scheme has the following prominent advantages. First,

its usability has been greatly enhanced as it significantly reduces user effort for credential

entry. A user’s biometric, i.e., the auditory-pupillary response, is automatically gathered

by the device. The entire process is hand-free and relieves users from memory burdens.

Second, since the user’s eyes are completely blocked by the VR headset, it is impossible

for an adversary to gain visual observation of the authentication process to launch shoulder-

surfing. Meanwhile, SoundLock, as a new kind of reflex physiological biometric for VR,

outperforms existing static biometric [45, 145, 162, 185, 220] in the following aspects:

First, auditory-pupillary responses are revocable. In the case of having one pupillary re-

sponse stolen or counterfeited, a new credential can be easily generated by changing its as-

sociated stimulus. Second, SoundLock can be implemented on many mainstream VR head-

sets, e.g., HTC VIVE Pro Eye, Pico Neo series, Varjo VR-3, and Fove VR [2, 93, 270, 274],

which are already equipped with eye trackers. It is well accepted that incorporating eye-
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tracking technology is a trend in VR to assist in simulating depth of field and focus and

providing users a more realistic and natural visual experience [60, 130, 246].

Despite these attractive properties, the design of SoundLock is faced with several

non-trivial challenges. First, while pupillary response exhibits prominent inter-subject dis-

tinguishability, identifying essential features out of raw pupil size measurement for accurate

user authentication is not an easy task. No prior research has been conducted on this topic.

We thoroughly investigate 60 features, including morphological features that are pupillary

response-specific and general statistical features, and narrow them down to 20 that best

represent the uniqueness of each individual. We validate through a comprehensive evalu-

ation that the selected features effectively produce high authentication accuracy. Second,

to enlarge the credential pool, we adopt multiple auditory stimuli. However, the multi-

stimuli prolong the authentication time and thus impair usability. To mitigate this issue, we

model the problem into an optimization problem that maximizes the authentication accu-

racy while satisfying a hard constraint on the authentication time (see Section 3.4). It aims

to balance security and usability. Realizing that it is challenging to directly solve the prob-

lem optimally owing to its non-linearity, we devise a two-stage heuristic algorithm to find

the approximate solution efficiently. Lastly, like other biometrics, the auditory-pupillary

response may exhibit variations over time. As a result, its authentication performance may

degrade over a long time span. To deal with this issue, we adopt an adaptive biometric

strategy to consistently update the classification model with the coming of new samples.

To evaluate the performance of SoundLock, we implement it on a VR device and

carry out extensive experiments involving 44 participants. It achieves an F1-score of 0.984,

FAR of 0.76%, and FRR of 0.91%, outperforming state-of-the-art solutions. Besides, our

scheme can be performed within a practical authentication time of 7 s. SoundLock also

demonstrates satisfactory consistency under various testing conditions. Finally, the user

study manifests that our scheme is well received among the participants; especially, 72.7%
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of them are willing to adopt SoundLock as the authentication scheme on their (future) VR

devices.

To summarize, the contributions of this paper include:

• We investigate a new kind of reflex physiological biometric, auditory-pupillary re-

sponse, for user authentication on VR devices. We validate its feasibility through a

measurement study.

• To model the response for user authentication, we investigate a set of morphological

and statistical features, which are proven effective in producing high authentication

accuracy.

• To strike a balance between security and usability in the design, we formulate an op-

timization problem. A two-stage heuristic algorithm is proposed to efficiently solve

the problem with an approximate solution.

• We perform extensive in-field experiments to evaluate SoundLock. Results demon-

strate that the proposed scheme outperforms state-of-the-art biometric authentication

solutions and is well received among participants in the user study.

3.2 Preliminaries

3.2.1 Background on Auditory-Pupillary Response

The pupil size has been proven sensitive to a wide variety of auditory stimuli [27,

113, 171, 186, 269]. Figure 3.1 exhibits pupil size, measured in pixels, changes as a subject

is presented with an auditory stimulus, a white noise that starts at 1 s and stops at 5 s.

This sample is randomly selected from our collected dataset. Measures from only one eye

are collected since pupillary responses in both eyes have been confirmed to be consensual

[140]. The presentation of an auditory stimulus results in a multi-phasic pupillary response.

The initial phasic response is evoked with transient pupil dilation shortly after the stimulus
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onset, followed by a constriction. This process is followed by the second round of, and

sometimes more rounds of, dilations and constrictions with attenuated amplitudes. After

the stimulus offset, the pupil gradually returns to its baseline, i.e., the pupil size under the

no-stimulus condition, accompanied by minor fluctuations [210].

Physiologically, the pupillary response is controlled by two muscles: the iris radial

muscle (IRM) increasing the pupil size and the iris sphincter muscle (ISM) reducing the

pupil size [38]. The balance between the sympathetic and parasympathetic nervous systems

determines pupil size. The underlying mechanisms are complex; the relative contribution

of the two systems depends on a variety of factors, such as stimulus characteristics and

cognitive activities. Pupil dilation is controlled by the IRM. IRM consists of fibers that are

oriented radially and connect the exterior of the iris with the interior. When IRM contracts,

it pulls the interior of the iris outward, thus increasing the size of the pupil. Upon perception

of auditory stimuli, psycho-sensory arousals are first triggered at the hypothalamus and

the locus coeruleus. The activities on the hypothalamus and the locus coeruleus reflect

arousals and project to the intermediolateral column of the spinal cord. The arousals finally

reach IRM via a complicated network of nerves and cause contraction. In contrast, pupil

constriction is controlled by ISM, which encircles the pupil like a cord that reduces pupil

size when it contracts. As shown in Figure 3.1, the pupil constricts once it dilates to a large

extent. This process operates through the opposite action of pupil dilation. ISM is directed

through the parasympathetic pathway. The activated Edinger-Westphal nucleus transmits

information via the oculomotor nerve to the ciliary ganglion, which is located behind the

eyeball. The information is further sent via the short ciliary nerve to innervate the ISM

to contract. In short, the pupil dynamics observed under auditory stimuli are a joint effect

delivered by IRM, ISM, and their corresponding neural pathways [163, 171, 186, 255, 277,

278].
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Figure 3.1: Pupillary response to auditory
white noise.
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Figure 3.2: Intra-/Inter-subject pupillary re-
sponse.

3.2.2 Measurement Study

While the phenomenon of auditory-pupillary response is well recognized, whether it

can be exploited for user authentication remains unclear. Our measurement study intends

to answer this question by carrying out extensive experiments. A total of 32 subjects are

invited. They listen to auditory stimuli of different types via the HTC VIVE Pro VR head-

set. A total of 20 stimuli are adopted, including white noise, monotones, prompt sounds,

natural sounds, and human voices. They have been widely adopted in prior works on

auditory-pupillary response [27, 113, 154, 171, 186]. Each auditory stimulus is a 6-second

audio track. Subjects’ pupillary responses are captured by a Pupil Labs eye tracker that is

integrated into the headset. To facilitate the data collection, a specialized app is built using

Unity, a cross-platform engine for VR development. To avoid impact from visual stimuli,

participants are exposed to a dark VR environment, i.e., no image is displayed. The above

process is repeated 20 times for each participant. The following analysis is conducted based

on the collected 12,800 samples, i.e., time-resolved pupil size sequences.

Intra- and inter-subject pupillary response. Figure 3.2 shows pupillary responses

from four trials under the same stimulus. Three of them are collected from the same sub-

ject. The three intra-subject responses exhibit similar patterns, although they are from

different trials. It indicates that pupillary response is relatively consistent for the same

user. Meanwhile, inter-subject responses exhibit distinguishable patterns. To better quan-
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tify the intra-/inter-subject response relationship, Figure 3.3 further plots the confusion

matrix (160×160) of pupillary responses among the 32 participants in response to one

stimulus. 5 samples are randomly selected from each participant. The Pearson correlation

coefficient (PCC) is adopted. The PCC values on the diagonal line (µ = 0.91,σ = 0.02) are

significantly higher than those off the line (µ = 0.36,σ = 0.14). It implies that individuals

exhibit diverse pupillary responses when presented with the same auditory stimulus, while

those from the same subject are consistent.

Pupillary response under various stimuli. We then play a variety of auditory stim-

uli to the subject. It is observed in Figure 3.5 that the corresponding pupillary responses

vary across the stimuli. We further extract 60 features out of the raw measures. Figure 3.4

depicts their normalized values. Polynomial regression is applied for better illustration. The

feature vectors are distinguishable with respect to various stimuli. Intuitively, it is possible

to generate a large number of credentials for a user from her pupillary responses by ap-

plying various auditory stimuli. More importantly, these credentials can be easily revoked:

In the case of having one pupillary response stolen, a new credential can be generated by

changing its associated stimulus, which is called cancelability [212]. In contrast, this prop-

erty does not exist in conventional biometrics, such as fingerprints, irises, and faces, which

are static to human beings. Once their credentials are damaged or counterfeited, the user

cannot cancel the pre-stored credentials or reset them.
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Summary. Our findings are encouraging. First, given the same auditory stimulus,

intra-subject pupillary responses exhibit consistent patterns in multiple trials, while inter-

subject pupillary responses are distinguishable. This property lays the foundation for our

idea that utilizes auditory-pupillary response as a new kind of biometric for user authenti-

cation. Second, the responses are diverse with respect to various stimuli. It thus motivates

us to employ a sequence of stimuli to enlarge the pupillary response-based credential pool.

More importantly, the property that the induced credential is stimuli-dependent offers the

potential to design a cancelable biometric. An in-use pupil credential can be revoked and

updated by simply applying new auditory stimuli. Lastly, we observe in the measurement

that the pupil demonstrates a stable behavior in response to auditory stimuli: It first di-

lates with the stimulus onset and then constricts, followed by a couple of more rounds of

dilation-constriction until the stimulus offset. The transitional changes in the pupil size

generate consecutive waveforms bearing rich information for authentication. We will in-

vestigate in Section 3.3.2 how to extract essential features.

3.2.3 Problem Statement

System model. We consider a general user authentication scenario on VR devices,

where a user has to provide a correct credential to log in. We assume that the headset is

equipped with an eye tracker for pupil detection and pupil size measurement. The proposed

authentication scheme is composed of two stages. In the enrollment stage, the headset plays

carefully designed audio stimuli and records users’ corresponding pupillary responses. A

set of relevant features are extracted upon which a classification model is trained and opti-

mized. In the login stage, a user is presented with the same stimuli. The collected pupillary

response is compared with the enrolled ones to determine the user’s legitimacy.

Many mainstream VR headsets are equipped with eye trackers nowadays, such as

Meta Quest Pro, HTC VIVE Pro Eye, PlayStation VR2, Pico Neo series, Varjo VR-3,
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and Fove VR [2, 93, 274], Varjo. The list continues to grow. It is well recognized that

eye tracking benefits VR in the following aspects: a) delivering a higher-quality graphics

experience through foveated rendering, b) improving wearing comfort by automatically

adapting the device to the user via calculating the user’s inter-pupillary distance, and c)

enhancing the interactions among virtual avatars to better reflect the user’s visual attention.

It is well accepted that incorporating the eye-tracking technology is a trend in the future

development of VR [130, 246].

Adversary model. The adversary’s goal is to impersonate the legitimate user and

log into the VR headset. The adversary is assumed to have physical control of the headset

and sufficient time to perform the attack. For example, the VR device is lost or stolen.

We primarily consider the impersonation attack [166] throughout this work. The adversary

intends to use its own biometric credential, i.e., pupillary response, under the auditory

stimuli to get authenticated. Other common attacks will be discussed in Section 3.5.1.

3.3 Basic Scheme Design

We start by introducing a basic scheme that renders a single auditory stimulus. It

consists of three main components: preprocessing, feature extraction and selection, and

classification. Upon the acquisition of a pupillary response, it is first preprocessed for

signal cleaning. Then a set of response-specific features are extracted as well as selected.

In the enrollment stage, these features are used to train the classifier; in the login stage,

they are fed into the trained classifier for authentication.

3.3.1 Preprocessing

The pupillary response is acquired by an embedded eye tracker sampling at 200 Hz.

Figure 3.6(b) (top) plots the raw measurements, which are mixed with noise and zero-

readings. This component aims to eliminate them and extract useful information from
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the raw measurement. The background noise is mainly caused by internal and external

electromagnetic radiations (e.g., VR display refreshing, power line emanation, and their

harmonics) that primarily exist above 50 Hz. In opposition, the frequency components of

pupil size variations mainly reside at the lower end of the frequency band, as shown in Fig-

ure 3.6(a). Hence, we apply a low-pass filter with a cutting frequency of 40 Hz to eliminate

the above-mentioned noise. The intermittent zero-readings exist in the measurement due

to spontaneous blinks. We apply the classic interpolation method to smooth the pupillary

response signals. Figure 3.6(b) (bottom) plots the pupillary response after preprocessing.

3.3.2 Feature Extraction and Selection

We extract two types of features from the processed pupillary response: morpholog-

ical features and statistical features. The former is features specifically proposed to outline

the morphology of the auditory-pupillary response patterns; they reveal the intrinsic geo-
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metrical characteristics in the multi-phasic signals. The latter is provides a more general

description of the signal statistics. As demonstrated in Figure 3.7, a pupillary response

can be divided into two phases: excitation phase and recovery phase. In the following, we

provide details of extracting the candidate morphological features from both phases.

Excitation phase. It is between the stimulus onset and the stimulus offset. In this

phase, the pupil is provoked by the stimulus and experiences transitional dilations and

constrictions.

• Response lag. It is defined as the latency between the stimulus onset and the mo-

ment the pupil reacts to it, as shown in Figure 3.8(a). Prior studies show that this

value is mostly determined by the neural pathways while less affected by mechani-

cal properties of the iris muscles [171, 278]. Differences in response latency among

individuals have been reported [25, 30, 90, 259, 268, 302]. In general, senior people

tend to exhibit longer response lag [259, 268].

• Peak/Valley magnitudes. Upon the stimulus onset, the pupil size increases as the

pupil dilates and reaches a large extent. Thereafter, the pupil size decreases as it

constricts. Multi-round dilations and constrictions generate a series of waveforms.

The corresponding peak (valley) magnitudes then serve as the features as shown in

Figure 3.8(b) (Figure 3.8(c)). A classic peak detection technique [42] is applied to

identify peaks and valleys in the response waveforms.

• Dilation/Constriction rates. Apart from the peak and valley magnitudes in the re-

sponse waveforms, we are also interested in the dilation/constriction rates. They are

manipulated by a complex mechanism involving the iris muscles and many com-

ponents along the neural pathways such as the nerve fibers in the intermediolateral

column, the super cervical ganglion, and the ciliary nerves [163, 171, 255]; these

rates reflect the biological heterogeneity in the human nervous systems and iris mus-
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cles. The dilation rate is calculated as the pupil size change in one dilation divided by

the associated time duration. The definition of the constriction rate follows similarly.

• Polynomial coefficients. n-degree polynomials are applied to approximate the re-

sponse waveforms during the excitation phase. We mainly focus on the first two

waveforms as the rest tend to attenuate mixed with more noise. n is set to 4 empir-

ically. Figure 3.8(d) depicts derived approximate polynomials; they align well with

the ground truth. The corresponding coefficients in the polynomials are treated as a

subset of features.

• Area under the curve (AUC). It is the area of the response curve during the excitation

phase, as illustrated in Figure 3.8(e). In general, the AUC tends to be larger when a

user is more agile with the auditory stimulus. AUC is derived by taking the integral

of the pupillary response over time.

Recovery phase. It starts from stimulus offset and lasts until the response cutoff.

• Recovery time. It is the time the pupil takes to return to its baseline. As depicted in

Figure 3.8(f), it denotes the time interval between the stimulus offset and when the

pupil stabilizes with negligible deviations from its baseline.

• Damped oscillation. With the stimulus offset, the pupil size gradually returns to its

baseline, accompanied by oscillatory behavior, as illustrated in Figure 3.8(g). We

propose to approximately characterize this pattern using a classic damped sine wave

model: y(t) = Ae−λ t cos(ωt−φ)+C [108]. The function parameters, A, λ , ω , and

φ , are taken as a subset of features.

• Pupillary unrest index (PUI). Human eyes exhibit continuous pupil size fluctuations,

known as pupillary unrest [126, 187, 235]. Although its origins are complex, this

phenomenon is mediated by fluctuating inhibitory activity within the parasympa-

thetic Edinger Westphal nucleus, possibly driven indirectly by the locus coeruleus

[128, 215, 241]. The pupillary unrest index (PUI) has been proposed in prior work to

60



characterize the pupillary unrest behavior [160]. It is defined as cumulative changes

in the average pupil size in consecutive observation windows. We thus adopt PUI as

part of the features.

• Baseline size. The pupil baseline size, depicted in Figure 3.8(h), has been well rec-

ognized as a user-specific biometric trait [46, 189]. It is the eye’s natural status when

no external stimulus is applied. In this work, several baseline-related parameters are

considered, including the average size, maximum, minimum, standard deviation, and

interquartile range. The baseline can be estimated once the pupil is recovered from

the excitation status or before stimulus onset.

Aside from the above-mentioned morphological features, we also take into account

general statistical features of pupil size from both phases, such as average, variance, me-

dian, skewness, and kurtosis. Since these statistical features have been widely adopted in

signal characterization [18, 189, 314], we do not expand the discussion here. Table 3.1 lists

all the 60 candidate features introduced in Section 3.3.2, including their names, categories,

phases, and notations. They are sorted by the normalized Fisher score described below.

Feature selection. This step selects from the candidate features the most relevant

ones for user authentication. The refined feature set helps to reduce the computation com-

plexity and avoid model overfitting. To this end, we calculate the Fisher score for each

feature, which is defined as the ratio between the feature’s inter-class and intra-class vari-

ances; a higher ratio indicates a more significant role in contributing to classification accu-

racy. All candidate features are sorted according to their normalized Fisher scores in Figure

3.9. Finally, the top 20 features are selected to feed into the classification model. These

selected features include morphological features such as the dilation rates, the peak magni-

tudes, and the second valley magnitude; the only selected statistical feature is the average

pupil size. The reason that morphological features rank relatively higher is probably that
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they precisely characterize the dynamics in pupillary response, whereas statistical features

that are more generic and abstract.

3.3.3 Classification

The remaining task is to apply a classification method over the selected features for

user authentication, i.e., to discriminate between the legitimate user and imposters. Two

types of classifiers are adopted and evaluated in this work: one-class classifiers and binary

classifiers. The former is trained only with samples from the class of interest, i.e., the en-

rolled legitimate user. The latter is trained on an explicitly labeled dataset of both classes,

i.e., the legitimate user’s samples and imposters’ samples. The following representative

machine learning models are employed. k-nearest neighbor (k-NN): It measures the simi-

larity between testing samples and training samples and makes the decision by comparing

the similarity with a threshold. It has been proven effective especially in cases with small

training datasets. Support vector machines (SVM): Its main idea is to find a hyperplane in a

multi-dimensional space that distinctly separates data points from different classes. Aside

from k-NN and SVM, other common classification methods, including logistic regression

(LR), Gaussian Naive Bayes (GNB), and random forest (RF), are also evaluated in this

work.
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3.4 Advanced Scheme with Multi-stimuli

The basic scheme utilizes one auditory stimulus. Inspired by the strong password

selection criteria, e.g., more characters and a mixture of numbers, letters, and special char-

acters, we propose to present the user multi-stimuli to enhance the response feature diver-

sity. Specifically, a series of stimuli are played sequentially. Then, all the responses are

concatenated and serve as the user’s credentials. While the idea is simple, a critical issue

is to decide the duration of each stimulus, as a too-long overall duration would impair the

usability.

To facilitate the discussion, we adopt the metric Kullback-Leibler divergence (KLD)

[144]. It is an indicator of similarity between two probability distributions P(x) and Q(x)

DKL = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
. (3.1)

We let P(x) be the feature distribution of the enrolled user, and Q(x) be that of the refer-

ence users, i.e., all the other users from the dataset. X stands for the feature space, and

x ∈ X denotes any possible interval of a feature value. Here KLD represents the distin-

guishability of the enrolled user from all other users. The larger the value is, the more

distinguishable the user is, and the more accurately it can be identified. We further formu-

late KLD as a function of time. After the stimulus onset, more features are extracted from

the measurement as time proceeds. For instance, features in the excitation phase are first

derived, followed by features from the recovery phase. Figure 3.10 shows the normalized
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KLD with respect to time. We first plot the KLD under a single stimulus (the cyan curve

labeled as “Single stimulus” in Figure 3.10). The stimulus starts at t = 0. KLD first rises

quickly as t is between 0 s and 2 s. Its growth slows down as t passes 2 s. This implies

the marginal benefit diminishes for involving more features under the same stimulus. We

also show the KLD of employing two stimuli (the orange curve labeled as “Multi-stimuli”

in Figure 3.10). The first stimulus starts at t = 0 and stops at t = 2 s; then, the stimulus is

off for 2 s, after which the second stimulus emerges from t = 4 s. The KLD experiences

another significant increase shortly after the presence of the second stimulus. We make the

following observations from Figure 3.10. First, the features do not contribute equally in

terms of user classification. The features identified earlier tend to play a more significant

role than the ones identified later. Second, the involvement of multiple stimuli introduces

more diversity in the pupillary response features and thus benefits classification accuracy.

Problem formulation. In the following, we discuss how to design auditory stimuli.

An optimization problem is formulated, where the objective is to maximize the overall

KLD in the corresponding pupillary response while keeping the entire authentication time

within a practical threshold T0, which sets a hard constraint on the authentication time.

Formally, the optimization problem is expressed as follows

max DKL(P||Q)

s.t.
N

∑
i=1

(ti + τ)×mi ≤ T0

mi ∈ {0,1}

(3.2)

We aim to select a couple of (e.g., 2-4) auditory stimuli from the pool of size N, i.e.,

N different audio tracks. The binary variable mi equals 1 if the i-th stimulus is picked

and 0 otherwise. The stimuli selection is necessary as the pupil reacts differently toward

various stimuli, as evidenced by our measurement study. Some stimuli are more effective

in eliciting distinct patterns in pupillary responses than others. The variable ti stands for
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the duration of the i-th stimulus. τ is a constant representing the interval duration between

two adjacent stimuli, which manages the tradeoff between accuracy (the possibility that

the pupil has returned to its baseline at the next stimulus onset) and usability (reasonable

authentication time). After closely inspecting our collected data, we set it to 2 s empirically

with 1.5% outliers. ∑
N
i=1(ti + τ)×mi is thus the authentication time. The variables in

the above-mentioned optimization problem include ti’s and mi’s, i ∈ [1,N]. Note that the

problem formulation is user-specific, because the feature distribution in each individual’s

pupillary response is diverse. Correspondingly, the solutions of ti’s and mi’s are different

across users; that is, each user is associated with a diverse optimum stimuli set and its

duration. The problem formulation and calculation are performed during the enrollment

stage.

A heuristic algorithm. The objective function and constraint of the above optimiza-

tion problem are both non-linear. Besides, the two variable sets mmm and ttt are linked to each

other. Hence, it is impractical to optimally solve it directly. In the following, we propose

a heuristic algorithm to find the approximate solution with high computational efficiency.

The algorithm is composed of two stages, each fixing the value of mmm and ttt, respectively.

The algorithm takes Pi (i∈ [1,N]) and Q as inputs, where Pi is the user’s feature distribution

in the pupillary response under stimulus i and Q is the feature distribution of all reference

users. In the first stage, we rank the KLD of each stimulus and select K candidate stimuli

that generate the highest KLD. Here K is calculated as ⌈T0
τ
⌉. It represents the maximum

number of stimuli that can be accommodated within T0. Recall that τ is the interval duration

between two adjacent stimuli. In the second stage, we exhaustively search for the maxi-

mum KLD among 2K − 1 possible stimuli combinations. To this end, we calculate KLD

for each stimuli combination. Since mi’s are fixed under each combination as a result of the

first stage, the original optimization problem is significantly simplified with ti’s as the only

variables. Now the remaining question is how to solve the simplified optimization problem.
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Algorithm 1: Two-stage heuristic algorithm
input : Pi (i ∈ [1,N]) and Q

output: Solution of mmm and ttt

1 Calculate KLD for each stimulus i;

2 K = ⌈T0
τ
⌉;

3 Select top-K stimuli with highest KLD;

4 for j = 1 to 2K−1 do

5 Formulate the simplified (3.2) given the j-th stimuli combination;

6 Solve it via the approximate gradient descent algorithm;

7 Pick the stimuli combination with the highest KLD;

8 The corresponding mmm and ttt serve as the final solution.

For this, we employ the approximate gradient descent (AGD) algorithm [23, 167, 275]. It

is an iterative method and useful especially when the derivative is hard to derive directly as

in our case. The AGD algorithm finds an approximate solution for ti’s.

Dealing with long-term biometric changes. Like other biometrics, the auditory-

pupillary response may exhibit variations over time [205, 225]. As a result, it can make the

template acquired during the enrollment stage poorly representative of newly collected data

samples, leading to degraded authentication performances. This phenomenon is known

as template aging [124]. Many strategies have been developed to account for this issue

[207, 213, 225]. Their main idea is to consistently update the classification model with

new samples. In this work, we follow the existing approach to tackle the possible biometric

pattern changes in the pupillary response. The core idea is to retrain the classification model

with new samples from successful authentication trials. Our key steps are summarized as

follows. 1) The system maintains a training dataset (reference set) of a fixed size after

initial enrollment. The optimum training size is determined by the classifier, which is
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investigated in Section 3.7.1. Like traditional passwords, this training dataset is securely

stored in the device. 2) When a new authentication sample arrives, it is labeled legitimate

if the authentication is successful. 3) The dataset is updated with new samples in a first-

in-first-out manner: these new samples are added into the reference set while the same

number of outdated samples is discarded in the meantime. 4) The classification model is

retrained over the updated dataset each several days or even more frequently, depending

on the authentication frequency of the user. Since lightweight classifiers are employed in

the proposed authentication scheme, the corresponding computation overhead of training

is minimal. Note that there are even more sophisticated adaptive mechanisms (e.g., [161,

174, 206]). We plan to integrate them into our design in future studies.

3.5 Security Analysis

3.5.1 Robustness Against Attacks

We primarily consider the impersonation attack throughout this work. The adversary

intends to use its biometric credential, i.e., pupillary response, under the auditory stimuli

to get authenticated. To launch the attack, the attacker is assumed to have physical access

to the victim’s VR headset. It happens, for example, when the device is lost/stolen or

temporarily possessed by the victim’s roommate. Our evaluation results show that the

success rate of such attacks is merely 0.76% on average. The robustness of SoundLock

against the impersonation attack will be presented with details in Section 3.7.2.

Like other biometric methods, adversaries can also attack SoundLock via the replay

attack, where the adversary injects a previously recorded sample of the pupillary response.

Such an attack is extremely difficult to perform in our case. As the user’s eyes are fully cov-

ered by the VR headset, it is impossible to record the target’s pupillary response externally.

On the other hand, it is possible for the adversary to access the victim’s pupillary response
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samples via, say, pre-installing malware to the headset. Luckily, our scheme adopts the

challenge-response authentication framework. With the interactive property, the attacker

should know the auditory stimuli in advance to output the timely and correct response from

the list of pre-recorded samples. It renders the attack very difficult to execute. Moreover,

we argue that the device would be faced with an even more severe situation, if malware is

pre-installed with access to the on-device authentication database.

Recent studies have also shown the feasibility of fabricating fake fingers and faces

to bypass biometric authentication [26, 76, 289]. They are considered as a special kind of

mimicry attacks. This attack is almost impossible to execute in our case, as the fabricated

eyeball should be able to react to specific auditory stimuli. The pupil changes are subtle,

smooth, dynamic, and unique to each individual. It is of great challenge, if not impossible,

to build a mechanical device to mimic pupil dilation and constriction precisely. We are

aware of some bionic eyes, which are essentially miniature cameras with necessary HCIs

to optic nerves. Still, there is no “pupil” in bionic eyes. Besides, it costs around $150,000,

which is extremely costly to deploy [276].

It is also possible that the auditory-pupillary response may be leaked, say, because

of using a malicious (or compromised) device. Luckily, this new kind of biometric is

revocable. In the case of having one pupillary response stolen or counterfeited, a new

credential can be easily generated by changing its associated stimulus. It is also one of

the prominent advantages of adopting auditory-pupillary response over other conventional

biometrics for authentication.

3.5.2 Entropy Analysis

Entropy has been widely adopted to evaluate the security strength of authentication

methods such as passwords [279] and PINs [280]. It is a measure of uncertainty in a

random variable [63]. The classic entropy of a variable x with the distribution P(x) is
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defined as H = −∑x∈X P(x) logP(x). In the context of biometric systems, however, the

classic entropy overlooks intra-user variability by assuming each user has fixed biometric

features and overestimates biometric information [253]. To tackle this issue, some prior

works adopt an alternative metric relative entropy to measure the security of a biometric

system [12, 253, 301]. We thus consider this metric too. Relative entropy is defined as the

decrease in uncertainty about a person’s identity due to a set of biometric features mea-

surements [12]. It is measured under the framework of KLD, K = ∑x∈X P(x) log
(

P(x)
Q(x)

)
,

where P(x), Q(x), and X represent the feature distribution of the target user, that of the

reference set, and the feature space. It quantifies how much a single user’s biometric fea-

ture distributions diverge from those of the population. It is noteworthy that the dataset

plays an important role in the entropy computation as it defines the feature distributions

P(x) and Q(x). According to the samples and their feature distributions collected in our

dataset, K is calculated as 81 bits on average. Table 3.2 shows the relative entropy of

SoundLock, keystroke, iris, fingerprint, and face, and the classic entropy of password and

PIN. We can tell from the equations of these two kinds of entropy that classic entropy is

an upper bound of relative entropy. In other words, the latter is a more conservative mea-

sure of authentication system security than the former [253]. The result shows that even

the relative entropy of SoundLock (81 bits) largely exceeds those of passwords and PINs.

SoundLock ranks second among all methods. It implies that dynamic pupillary response

bears high uncertainty in the biometric information across individuals. It thus serves as a

promising biometric for user identification. While the iris is associated with the highest

relative entropy, the iris scanner is prohibitively costly to equip to a wide spectrum of VR

devices.
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3.6 Experiment Methodology

3.6.1 Experiment Setup

Apparatus. We perform all experiments using an HTC VIVE Pro VR headset teth-

ered to an Exxact TensorEX 1x Intel Core X-Series processor workstation. A Pupil Labs

eye tracker is integrated into the VR headset. All virtual scenes and the prototype of

SoundLock are implemented using Unity, a cross-platform engine for VR development,

and scripted in C# and Python. The prototype is developed to render stimuli and capture

the pupillary response (i.e., time-series pupil size) through the eye tracker’s API. It includes

functions of enrollment, optimization, authentication, and device lock/recovery.

Experiment setup. Before the experiment, participants receive an introduction to

the concept of SoundLock as well as experimental instructions. After providing informed

consent to take part in the study, they are asked to fill out a pre-study questionnaire based

on the introduction to evaluate the expected usability of SoundLock. Then, participants are

instructed to put on the VR headset. A student researcher assists in adjusting the device

to ensure the wearing comfort and the correctness of eye tracker readings. Throughout

the entire experiment, the lab environment is kept quiet by default. Next, the participant’s

pupillary response is recorded while performing the authentication tasks. Task details are

presented in Section 3.6.2. There is a short break between authentication tasks. After

the experiment, participants are asked to fill out a post-study questionnaire to evaluate the

perceived usability of SoundLock through the tasks.

To facilitate evaluation, we adopt several commonly used metrics: false acceptance

rate (FAR), false rejection rate (FRR), equal error rate (EER), F1-score, and area under the

ROC curve (AUC).

3.6.2 Experiment Design

The entire experiment consists of two phases: a pilot study and an in-field study.
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Pilot study. The purpose of the pilot study is a) to collect preliminary data for the

measurement study (see Section 4.4), b) to select from the candidate classifiers the one

with the best overall performance, and c) to fix the classifier’s training size and hyperpa-

rameters. In the pilot study, each participant is asked to listen to a set of 20 auditory stimuli

consecutively. Their corresponding pupillary response is recorded. The auditory stimuli

include white noise, monotones, prompt sounds, natural sounds, and human voices. Each

stimulus is a 6-second audio track. Each stimulus is repeated 20 times for all participants.

With the collected dataset, we carefully tune the training size and hyperparameters of each

candidate classifier proposed in Section 3.3.3. Then, we compare all candidate classifiers

and select the one with the best performance. Results will be discussed in Section 3.7.1.

• Enrollment: Each participant is presented with a set of 20 auditory stimuli, with each

stimulus 5 times. Their auditory-pupillary responses are recorded. All the samples

are used to train the classifier as well as to determine the user-specific stimuli via

the algorithm introduced in Section 3.4. In this way, each participant’s biometric

credential is enrolled.

• Authentication: In this task, the user-specific stimuli sequence is presented to the

participant. Access is granted if the newly recorded pupillary response is classified

as a legitimate one. A participant has three chances to pass the authentication. It is

deemed successful if the biometric credential is verified in at least one in three trials.

• Impersonation attack: In this task, participants are asked to perform impersonation

attacks. The attacker intends to use its own biometric credential, i.e., pupillary re-

sponse, under the auditory stimuli to get authenticated. Specifically, each participant

is randomly assigned with three other participants’ biometrics to mimic. The attacker

is presented with the victim’s customized stimuli. The attack is deemed successful if

the attacker gets authenticated in any one of three consecutive trials.
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• Participants are asked to repeat the authentication task in a few follow-up sessions

to examine the scheme performance under various conditions (see Section 3.7.3).

Specifically, to investigate the impact of user motion, participants are asked to per-

form authentication under four types of motions: static (baseline), eye movement,

head rotation, and body stretch. To evaluate the SoundLock performance across dif-

ferent time of day, a series of sessions are scheduled for the same group of people

from 10 AM to 6 PM, with a 2-hour interval in between. To examine the impact of

visual fatigue, authentication tasks are also conducted as participants are exposed to

the VR environments for different time duration. We further carry out a longitudinal

study. Participants are re-invited 7 days and 14 days after the main session to re-

peat the tasks. The purpose is to show if auditory-pupillary response as a biometric

credential would change over time.

Attendance and time consumption. A total of 32 participants completed the pilot

study. The average time spent is around 60 min, including 50 min for displaying all au-

ditory stimuli samples and data recording with 10 min overhead. In the in-field study, 44

participants completed the main session, which consists of the enrollment, authentication,

and impersonation attack tasks. They all participated in the impact of the user motion and

the visual fatigue sessions right after the main session. The above sessions take around

50 min including necessary overhead, such as Q&A and reading/signing the consent form.

25 of them participated in the impact of time session. 28 and 18 of them completed the

7-day and 14-day longitudinal study, respectively. A user study is conducted; it consists of

a pre-study and a post-study before and after the main session, respectively.

3.6.3 Recruitment and Ethical Aspects

Participant recruitment and demographics. The participants are recruited and in-

formed through emails, social media postings (departmental Facebook website), and verbal
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communications. When a participant shows interest in participating in our study, we pro-

vide him/her a screening questionnaire asking about age, gender, race, and hearing and

visual abilities. We screen participants with no hearing and visual impairments (corrected

hearing ability with hearing aids and corrected visual ability with glasses and contact lenses

will be allowed). Efforts have been made to recruit a diversified population based on age,

gender, and race. After that, the participants are officially invited and asked to schedule a

time and date with the researchers for the study. A total of 44 participants are recruited.

They are all college students, faculty, and staff, aged between 17 and 40. Their demo-

graphic information is given in Table 5.1. Each phase takes around 1 hour on average.

Participants are compensated at a rate of $10 per hour.

Ethical aspects. The participants are provided with the Informed Consent document

before the study. The document provides a detailed description of the study’s procedure,

benefits/risks, intentions, compensation, possible risks/discomforts, and rights. In order

to make sure that participants are aware of the study procedures, the research team reads

the summarized and important contents of the consent document at the beginning of each

experiment and answers any questions the participant may have. The consent document is

signed in person when the participants are in the lab. Subjects have the option to decide

whether to participate in the experiments or not. During the experiment, they are free

to take a break or quit at any time without penalty. They can ask any questions related

to this research. The research team signs a confidentiality agreement with the participants

regarding the protection of their biometric data, which are anonymized and securely stored,

and will only be used for the purpose of this research. The entire study is IRB-approved.
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3.7 Results

3.7.1 Pilot Study–Classifier Selection

In the pilot study, the objective is to examine the candidate classification models

and select the one that fits our scenario the best. The results will be used in the prototype

development.

Classification model comparison. We implement different classification models

as discussed in Section 3.3.3, namely k-NN, OC-SVM, B-SVM, LR, GNB, and RF. 10-

fold cross-validation is performed with the collected dataset. Specifically, the dataset is

randomly split into two subsets, a training set and a testing set. Then, the classifier is trained

and tested, with each user iteratively regarded as legitimate and the rest being imposters.

This process is repeated 10 folds to prevent overfitting. We plot FAR and FRR in Figure

3.12 by tuning the hyperparameters of the classification models.

For k-NN, it measures the distance between the testing sample and k training samples

and compares it to a threshold α: if the distance is below α , the testing sample is deemed

legitimate; otherwise, it is adversarial. Therefore, a larger α implies a looser detection rule

that more likely considers an input sample legitimate and vice versa. By controlling the

hyperparameter α , i.e., the distance threshold, we obtain the EER of k-NN equal to 1.5%

at α = 1.0 (see Figure 3.12(a)).

For SVM, its idea is to find an optimal hyper-plane in high-dimensional space to per-

form classification. We adopt the radial basis function (RBF) kernel, a popular kernelized

function, to transform the non-linear data to higher dimensions. A critical hyperparame-

ter for the RBF kernel is γ , the standard deviation of the kernel function that defines the

decision boundary qualitatively; a larger γ indicates a more relaxed decision criterion to

avoid the hazard of overfitting, resulting in a higher possibility that the input is accepted; a

smaller γ implies a strict and sharp decision boundary. Figure 3.12(b) (3.12(c)) illustrates
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the FAR and FRR of the OC-SVM (B-SVM) as γ changes, with other parameters opti-

mized. We find the lowest EER for OC-SVM as 3.4% at γ = 6.3×10−3. For B-SVM, the

lowest EER is 4.3%, obtained at γ = 3.2×10−3.

Similarly, for LR, which uses a logistic function to model the dependent variable to

generate a classification output, an essential hyperparameter is C, the inverse of regulariza-

tion strength; a larger C corresponds to less regularization and vice versa. As depicted in

Figure 3.12(d), the lowest EER of LR is obtained as 4.6% by tuning C to be 2.5.

As a widely adopted probabilistic machine learning algorithm, GNB works by calcu-

lating each data point and assigning the point to the higher class probability that it belongs

to. An important hyperparameter is the variance smoothing v, which indicates the portion

of the largest variance of all features added to variances for calculation stability. By setting

v = 10−7, we obtain the lowest EER of GNB as 7.8%, as shown in Figure 3.12(e).

RF consists of many decision trees and uses bagging and feature randomness when

building each tree to create an uncorrelated forest of trees whose prediction by committee

is the most accurate. An important hyperparameter is n, the number of trees. A larger

n leads to more accurate predictions at the cost of higher computation time and power

consumption. We plot in Figure 3.12(f) the FAR and FRR curves as a function of the n. We

find the EER converges to 3.6% as n approaches 140.

Table 3.4 compares all the classification models in terms of EER, F1-score, and AUC.

Among them, k-NN produces the optimal FAR-FRR tradeoff with the lowest EER of 1.5%

as well as the highest F1-score (0.983) and AUC (0.996). Its superior performance is

primarily due to its robustness with respect to the data size. Compared with other models

that generally require a large training dataset, k-NN better fits our scenario, where only a

limited number of training samples (around 5) are collected.

Training data size. Figure 3.13 shows the EER with respect to the training data size,

i.e., the number of enrolled samples. Given the same training data size, k-NN achieves the
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Figure 3.12: FAR, FRR, and EER of each classification model.
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Figure 3.14: Authentication performance.

lowest EER among the six classifiers, while GNB exhibits the worst performance. This is

because the latter relies on the assumption that each class follows a Gaussian distribution.

A larger dataset is thus needed to properly model the distribution. Empirical study indicates

that it typically takes at least tens to hundreds of samples, depending on the task, to deliver

a satisfying performance [20, 183, 197]. In contrast, only 5 samples are needed for k-NN

to obtain EER as low as 1.5%. It indicates that k-NN attains a promising authentication

accuracy with much fewer training samples.

To sum up, k-NN outperforms the other five models in classification accuracy, given

the same training data size in our case. More importantly, it takes as few as 5 samples to

sufficiently train the classifier. Hence, the enrollment stage can be performed efficiently.

3.7.2 In-field Study–System Performance

As a proof-of-concept implementation, we develop the prototype of SoundLock. Mo-

tivated by the results from the pilot study, we implement k-NN as the classifier and fix its
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hyperparameters as discussed. A total of five training samples are collected from each

participant in the enrollment stage. A series of in-field tests are conducted to evaluate the

system’s performance.

Authentication accuracy vs. authentication time. We first examine the authenti-

cation accuracy of SoundLock with respect to authentication time in Figure 3.14(a). Au-

thentication time is defined as the span from stimulus onset until the response cutoff. In

other words, it includes the time to present stimuli and the time for the pupil to react. Both

FAR and FRR drop given a longer authentication time. This is because more features are

extracted and thus enhance the classification accuracy. We also notice that the benefit of a

longer duration becomes marginal if it is beyond 7 s, with the average FAR and FRR as low

as 0.76% and 0.91%, respectively. Figure 3.14(b) depicts the authentication accuracy by

adopting different numbers of stimuli; the error rate decreases with more stimuli presented.

It complies with the result in Figure 3.10–more stimuli enhance the distinguishability of

the target user. Based on these observations, we adopt the multi-stimuli scheme and set

the authentication duration threshold T0 as 7 s in the optimization formulation to strike a

balance between security and usability. Table 3.5 compares the authentication time be-

tween SoundLock and existing works. Classic PINs and drawing patterns generally require

a shorter time according to evaluation results from [99]. However, it demands relatively

high motor skills for users to quickly enter these credentials in VR. They have been criti-

cized as unfriendly to the elderly population and new users. Besides, relying on visual cues

may hinder their usage for people with visual impairments. Among biometric schemes,

SoundLock exhibits reasonable authentication time. Note that all these schemes need extra

sensors, such as an EEG, to acquire the biometric signals.

Authentication accuracy comparison with state-of-the-arts. We further compare

overall authentication accuracy between SoundLock and state-of-the-art solutions. Table

3.5 shows that SoundLock almost achieves the best performance among all biometric meth-

77



ods in terms of FAR (0.76%), FRR (0.91%), and F1-score (0.984). Besides, it outperforms

PIN and drawing pattern in FRR. It means a legitimate user gets denied by PIN or drawing

pattern at a higher chance. This is because these two methods require necessary motor

skills to perform especially on VR terminals. Errors would occur during credential entry

when controllers are not operated properly.

3.7.3 Performance Under Various Scenarios

In practical scenarios, a user may perform the authentication under different condi-

tions, such as motion, time of day, and exposure time to VR environments. It is critical to

evaluate if SoundLock is susceptible to these conditions.

Impact of user motion. Since a user may make some movements during the au-

thentication, it is important to show that the proposed scheme is motion-insensitive. In the

experiments, participants are asked to perform four types of motions: sitting (static), eye

movement, head rotation, and body stretch. The corresponding authentication accuracy is

depicted in Figure 3.15(a). We find that the best performance is achieved at the static status

with averaged FAR = 0.83% and FRR = 0.90%. Eye movement is associated with the high-

est FRR. This is because it introduces errors in the eye tracker calibrating the pupil size.

Still, the authentication accuracy is practically acceptable with FAR = 0.85% and FRR =

2.69%. Based on the above results, users would be recommended to minimize their eye

movement for the login duration. Other moving actions such as head rotation and body

stretch also marginally increase the FRR, possibly due to the slight displacement of the

eye tracker. Nevertheless, the increase is negligible; besides, the FAR remains consistent

among various types of user motions (0.80± 0.05%), which suggests that user motions

would not impact the security property of SoundLock.

Impact of noisy environments. We evaluate the impact of ambient noise on the

performance of SoundLock. Three kinds of noises have been considered: white noise,
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Figure 3.16: Performance under various
noise types and levels.

office noise, and home noise. In particular, the white noise is synthesized with all the

audible frequencies at the same intensity. The office noise is composed of people chatting,

typing, phone ringing, computer fans, paperwork, etc. The home noise is a mixture of air

conditioning, laundry, door locking, repairing, and TV sounds. All these soundtracks are

downloaded from Mixkit [176]. In the experiments, the sounds are played as background

noises by a pair of external speakers connecting to a second PC in the lab. We thus simulate

the VR usage scenarios in generic, office, and home environments, respectively. Results

are shown in Figure 3.16. We find that the performance, FAR and FRR, degrades slightly

as the sound level increases from 40 dB to 80 dB. Note that sound levels are in the 40-80

dB range in most offices and homes [62]. It indicates that the ambient noise does influence

the pupillary response. On the other hand, the influence is limited. Take home noise as an

example. FAR = 0.67% and FRR = 0.88% as the sound level is 40 dB. They become 0.83%

and 1.33%, respectively, if the noise is at 80 dB. It may be attributed to the fact that the

stimulus audio is played via the VR headset, which is much closer to the user’s ears than

the noise sources. The former is thus dominant in the perceived sound.

Impact of time of day. We further examine if SoundLock is subject to the time of

the day it is performed. A series of tests are scheduled over the same group of participants

from 10 AM until 6 PM, with a 2-hour interval in between. We find in Figure 3.15(b) that

the performance is relatively stable throughout the day. To quantify the statistical difference
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in the FAR and FRR across different time of the day, we employ the Kruskal-Wallis test

[143]. The test result indicates there is no significant difference on both FAR (χ2 = 2.56,

p > 0.05) and FRR (χ2 = 6.05, p > 0.05) with respect to the time of the day.

Impact of exposure time to VR environments. It is well known that wearing VR for

long periods can cause visual fatigue and motion sickness due to vergence-accommodation

conflict [49]. It is therefore interesting to evaluate the performance of SoundLock with

respect to users’ exposure time to VR environments. In the experiment, each participant

is asked to stay in the immersive environment for various periods of time, i.e., 10, 20, or

30 min, before performing the authentication. A participant can freely quit the experi-

ment whenever they report discomfort or at any time they desire. In particular, users can

choose to watch VR videos, play VR games, or browse online via the device. Table 3.6

summarizes the results. We observe that both FAR and FRR slightly increase under a long

exposure time. The increase of FRR is relatively more prominent, by 0.74% from 0 min to

30 min. Conversely, FAR only sees a minor increase of 0.16% over time. This indicates

the security of SoundLock is not influenced much, since incorrectly accepted adversarial

authentications are limited; however, there is a moderately increasing chance that a legit-

imate user is wrongly classified. It indicates that pupillary response drifts slightly as the

user is exposed to the VR environment for a while.

Longitudinal study. To investigate the long-term performance of SoundLock, par-

ticipants are invited to attend two follow-up sessions, 7 days and 14 days after the main

session, to repeat the authentication process. 28 and 18 participated in the two follow-up

sessions, respectively. The adaptation strategy introduced in Section 3.4 is adopted. For

comparison, we also test in the last session the performance of SoundLock without adap-

tation. The result is summarized in Table 3.7. The error rate increases as time proceeds

without adaptation, with FAR (FRR) rising from 0.79% (0.91%) to 8.89% (5.56%), after a

14-day duration. It implies that the biometrics, i.e., the auditory-pupillary response, drifts

80



slowly over time. In comparison, the long-term performance becomes stable with the in-

tegration of our adaptation strategy. Specifically, the FAR (FRR) is 2.22% (1.48%), which

merely exhibits a performance change of +1.46% (+0.57%). It suggests that our approach

effectively deals with the temporal variation in pupillary response. Note that participants

do not perform authentication in between sessions. We optimistically expect an even bet-

ter long-term performance when SoundLock is under daily usage as the adaptation can be

executed more frequently.

3.7.4 User Study

The goal of the user study is to evaluate the usability of SoundLock from participants’

subjective perceptions.

Design. The study consists of a pre-study and a post-study, conducted before and

after the main session of the experiment, respectively. To investigate the impact of the in-

field experiments on user perception, the same questionnaire is used in both studies. In part-

I of the questionnaire, all participants are asked to provide their perception of SoundLock

by responding to 9 questions on a 5-point Likert scale (with 1 = strongly disagree and 5

= strongly agree). These questions cover multiple aspects of security and usability. Table

3.8 lists all the questions. Part-II of the questionnaire includes three open-ended questions

regarding overall experience “What’s your overall experience with SoundLock?”, concerns

“Do you have any concerns or did you notice any potential issues of SoundLock?”, and

suggestions “Do you have any suggestions to improve SoundLock in the future?”.

Results. All 44 participants respond to the questions. Figure 3.17(b) displays the

distribution of answers to part-I questions in post-study. In general, participants express

their satisfaction with SoundLock, especially in Q1 (µ = 4.32,σ = 0.97, median = 5),

Q2 (µ = 4.07,σ = 1.16, median = 4), Q4 (µ = 4.20,σ = 0.92, median = 4), Q5 (µ =

4.43,σ = 0.86, median = 5), and Q6 (µ = 4.48,σ = 0.81, median = 5). The least rated
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one is Q3 (µ = 3.55,σ = 1.25, median = 4). As reported by several participants in the

open-ended questions, this is caused by a couple of audio tracks in the stimuli pool. After

close examination, listening discomfort is observed in audio tracks with bursting and high-

pitch sound.

We then compare the survey results between the pre-study and the post-study using

the Student’s t-test [250], to investigate whether there is a significant statistical difference

between the two studies. According to the test result, the most significant difference be-

tween the two studies lies in Q1 (t(86) = 2.06, p = 0.021 < 0.05), Q4 (t(86) = 1.87, p =

0.032 < 0.05), Q5 (t(86) = 1.73, p = 0.044 < 0.05), and Q6 (t(86) = 1.70, p = 0.046 <

0.05). Q7 has the least significant inter-study difference (t(86) = 0.05, p = 0.480). In gen-

eral, the average rating is higher in the post-study than the pre-study for all questions; even

Q7 sees a slight improvement (µpre = 3.59 vs. µpost = 3.61). These results indicate that

SoundLock exceeds users’ expectations after they have real experience with it. Q9 reflects

the user’s overall attitude towards SoundLock for real-world usage. The result for Q9 in

the pre-study (post-study) is µpre = 3.75, σpre = 1.20 (µpost = 4.07, σpost = 1.04). Mean-

while, 63.6% (72.7%) users report a score larger than 3, i.e., agree or strongly agree, in

the pre-study (post-study). This means that most users are willing to adopt SoundLock as

the authentication method for VR devices. To summarize, SoundLock is well perceived by

users, primarily due to its high security (Q1), ease to use (Q4), ease of learning (Q5), and

low cognitive load (Q6).

Subjective feedback. A total of 24 participants respond to the open questions in

part-II of the questionnaire. 13 participants leave feedback on the overall experience of

SoundLock. Among them, 4 deem the authentication process in SoundLock to be fun, e.g.,

“It was a fun experience!” (P9). 3 appreciate the idea and logic behind SoundLock, e.g.,

“The idea of using pupil for authentication is smart.” (P35). 5 participants report satisfac-
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Figure 3.17: Participants’ subjective response distributions.

tory usability of SoundLock, e.g., “I don’t need to do anything and the authentication is

automatically done.” (P40).

Questions are raised by 9 participants. 3 of them question the robustness against con-

sanguinity, e.g., “Will twins or siblings be able to hack into each other’s profile?” (P35).

This question is mainly due to the observation that identical twins or even siblings tend

to share certain similar biometrics. Since there are no twins or siblings in our hired par-

ticipants, we are unable to answer the question. We plan to investigate this as part of

our future work with an extended group of subjects. 2 participants express privacy con-

cerns, e.g., “Will my pupillary response be used to infer what I’m thinking?” (P38). Since

the auditory-pupillary response is a reflex biometric, the pupillary response is stimulus-

dependent. Basically, it reflects how human eyes react to an audio sound rather than the

user’s cortical processing, i.e., mental behavior. So far, we are unaware of any existing

results on this topic. 3 participants mention some discomfort in listening to a couple of

auditory stimuli with bursting and high-pitch sound. As a solution, we plan to investigate

an even larger auditory stimuli pool in our future work. Volunteers will be invited to listen

to and rate those stimuli. Any unpleasant ones will be discarded.
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10 participants provide their comments for potential improvement. Among them, 3

suggest lowering the sound volume. It is worth mentioning that participants exhibit dif-

ferent tolerance of sound volume. 3 participants suggest combining with other forms of

stimuli, such as colors, images, and videos. 4 propose to generalize SoundLock to the AR

platform and other terminals, e.g., “I think the system can be extended to smartphones,

which will prove a valuable addition. The speaker can emit a sound and the eye image can

be captured by the camera.” (P1). Many of the comments are valid and inspire us with

potential future work.

3.8 Related Work

User authentication on VR. While password and PIN serve as the most popular au-

thentication mechanisms on VR devices [190], they have been criticized for these usability

deficits: it takes users substantial effort to select correct letters/digits/characters from the

virtual keyboard using the virtual laser extended from their controllers. Moreover, such au-

thentication schemes have been proven highly vulnerable to shoulder-surfing attacks. Due

to the occlusion of the VR headset, the user is unaware of the surroundings, rendering it eas-

ier for an adversary to acquire the entered credential through observation [82]. To address

these issues, both industry and academia have been actively searching for practical alterna-

tives. The existing methods can be broadly categorized into five classes: knowledge-based

methods [10, 94, 98, 170, 305], physiological biometrics [19, 55, 155, 234], behavioral

biometrics [162, 185, 204, 237, 311], token-based methods [48], and a mixture of them

[169, 297, 314]. A recently published SoK paper provides an extensive discussion on this

topic [248]. Please refer to it for more details. According to its discussion, physiological

biometrics seem to outshine their peers so far due to their high usability and accuracy. Nev-

ertheless, they bear at least two limitations for broad deployment. First, to capture users’
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biometric information, such as electroencephalogram (EEG), electrooculography (EOG),

electrical muscle stimulation (EMS), and iris patterns, sophisticated sensors are required.

For example, iris scan has been deployed for user authentication on HoloLens 2 [175],

a high-end AR device costing at least $3,500. Due to its high price, the iris scanner is

less likely to equip to general VR devices1 in the near future [260]. Besides, biometrics

are unique to an individual. Once such credentials are damaged or counterfeited, the user

cannot cancel the pre-stored credentials or reset them with different biometric input. This

property is also called cancelability. In contrast, our approach exhibits the following ad-

vantages. First, it is free from additional high-end sensing devices; instead, it only needs

an eye tracker, which has been integrated into many prevalent commercial VR headsets.

It is well accepted that incorporating eye-tracking technology is a trend in VR to assist in

simulating depth of field and focus and providing users with a more realistic and natural

visual experience [60]. Second, auditory-pupillary responses are cancelable. In the case

of having one pupillary response stolen, a new credential can be generated by changing its

associated stimuli.

Table 3.9 provides a comprehensive comparison among some representative user

authentication schemes for VR. The existing schemes are categorized into knowledge-

based authentication (white), physiological biometric authentication (light gray), behav-

ioral biometric authentication (medium gray), and multi-factor authentication (dark gray).

All schemes are compared from multiple aspects of usability and security.

Pupillary biometrics for user authentication. The idea of exploiting pupillometry

for user authentication has been around for a decade [35, 46, 189]. Most efforts have been

devoted to enhancing authentication accuracy. For example, Bednarik et al. [28] proposed

combining pupillary biometrics with eye movements for user authentication. A similar idea

is adopted in [79]. However, implementing these schemes is faced with several practical

1The price of Meta Quest 2, the most popular VR device so far, ranges from $299 to $399.
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challenges: eye movements and pupillary behaviors are task-dependent and light-sensitive.

To overcome these limitations, researchers proposed leveraging pupillary light reflex (PLR)

for user authentication [66, 294, 295]. PLR is an involuntary reaction of the human eyes

to an external light stimulus: as a user is presented with lights of various combinations of

chromas and intensities, her pupils will constrict and dilate accordingly. Typically, to elicit

prominent and acute changes in pupil size (to create distinguishable features for classifi-

cation), users are presented with strong light stimuli. It may lead to snow-blindness and

flash-blindness effects [39, 92, 245]. Performing it on a daily basis could potentially bring

severe health issues, e.g., temporary or even permanent vision impairment. Alternatively,

SoundLock avoids the above concern as it employs auditory stimuli.

Challenge-response protocols for biometric authentication. Challenge-response

has recently emerged as a popular authentication protocol and is frequently combined with

biometrics for user identification. It leverages a user’s physiological response to a given

stimulus, i.e., challenge, injected by the interactive device. The assumption is that each

user’s response to a given challenge is unique. Examples of challenge-response biomet-

rics include: the palm’s/finger’s response to vibrations [152, 158], EEG response to visual

stimuli [19, 155, 288], or muscle response to electrical stimulation [55]. For example,

Velody [152] makes use of the unique and nonlinear hand-surface vibration response for

user identification. Similarly, VibWrite [158] enables user authentication via finger inputs

on ubiquitous surfaces through physical vibration. It is implemented using a pair of vibra-

tion motors and a receiver that can be attached to any surface. Lin et al. [155] proposed a

psychophysiological authentication protocol using carefully designed visual stimuli to ac-

quire brain response signals. A similar idea is adopted in [19, 288]. Compared to conven-

tional biometric authentication, the credentials created under challenge-response protocols

are revocable–once a credential is counterfeited, it is convenient to reset it. Nonetheless,

all the above schemes either rely on sophisticated sensors for response data acquisition or
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require actuators for challenge generation (e.g., motor vibrator), which do not exist in VR

headsets. Hence, they are inapplicable here. Recently, reflexive eye behaviors in response

to visual stimuli [240] have been exploited for user authentication. Their stimulus consists

of presenting a single red dot on a dark screen that changes position multiple times. Then

reflexive saccades are triggered; the distinctive gaze path is treated as the unique signature.

This scheme requires explicit action, i.e., eye movement, from the user. Instead, Sound-

Lock elicits users’ involuntary pupil size changes in response to auditory stimuli with bare

cognitive effort.

3.9 Limitations and Future Work

In this section, we discuss several limitations of this work and present our future

research directions.

Enrollment time. SoundLock is associated with a relatively long enrollment time.

Under the current design, it ranges between 800 to 820 seconds. This is because SoundLock

collects user’s pupillary responses to the entire stimuli pool which consists of dozens of

audio clips in the enrollment stage. The user-specific optimization is applied to find the

best stimuli sequence for an individual. Note that the enrollment is only performed once for

each user. To further reduce it, we can replace the current online user-specific optimization

with offline optimization on the population scale, that is, an optimal stimuli sequence is

derived for a large population group. In this way, only one stimuli sequence is rendered in

the enrollment stage rather than the entire pool. The enrollment time would be substantially

reduced accordingly. If a user’s credential is counterfeited, a new stimuli sequence should

be requested. As another possible approach, rather than presenting a user with the whole

stimuli pool, we can reasonably present a subtset. We will carefully select the stimuli that
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generate the highest entropy among users. Besides, analysis is necessary to evaluate its

impact on authentication accuracy.

Multi-modality stimuli. SoundLock only makes use of auditory stimuli. In fact,

visual stimuli, such as lights, images, and moving objects, would also evoke pupillary

response. In our future work, we plan to investigate biometric authentication methods ex-

ploiting multi-modality stimuli. Hopefully, it would introduce new feature dimensions and

thus further enhance the system entropy. There are several research questions deserving

thorough investigation. First, how to combine visual and auditory stimuli? There are at

least two strategies, to display the two kinds of stimuli sequentially or concurrently. Differ-

ent strategies would lead to distinctive pupillary response patterns (and thus entropy) and

time efficiency. Second, under the new design, a new set of prominent and reliable features

should be extracted from the raw data to optimize the accuracy. Third, the user-specific

stimuli optimization will be revisited to balance security and usability with multi-modality

stimuli.

Scalability. SoundLock has been tested among 44 subjects. In our future work,

we plan to find out whether the proposed biometric works for a larger and more diverse

population. Besides, the current benchmarking of system entropy is based on the dataset

collected so far. With extended participation, the calculation result would reflect the ground

truth better. Besides, SoundLock is only prototyped and evaluated on one kind of VR model

(HTC VIVE Pro) and has been exclusively focused on the VR platform. Next, we plan to

evaluate SoundLock on a broader set of VR headsets and examine the impact of device

heterogeneity. Additionally, we will also examine the feasibility of generalizing our idea

to other platforms, such as AR terminals and smartphones.
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3.10 Conclusion

In this paper, we present SoundLock, a novel user authentication scheme designed

for VR devices. SoundLock recognizes legitimate users by extracting carefully designed

features from pupil size changes in response to auditory stimuli. We first introduce a ba-

sic scheme using a single stimulus, followed by an advanced scheme with multi-stimuli.

A proof-of-concept prototype of SoundLock is implemented on a VIVE Pro VR headset.

Extensive in-field experiments are performed involving 44 participants. Results show that

SoundLock offers high authentication accuracy, which outperforms state-of-the-art bio-

metric authentication solutions for VR. SoundLock also exhibits consistent performances

under various testing conditions. Our user study reveals that SoundLock is well received;

72.7% of the participants are willing to adopt SoundLock as the authentication mechanism

on their (future) VR devices.
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Table 3.1: List of all the 60 candidate features.

Index Feature name Category Phase Notation

1 Response lag Morphological Excitation rl
2-3 Peak magnitudes Morphological Excitation p1−2
4-5 Valley magnitude Morphological Excitation v1−2
6-7 Dilation rates Morphological Excitation dr1−2
8-9 Constriction rates Morphological Excitation cr1−2

10-19 Dilation polynomial coefficients Morphological Excitation d pc1−10
20-29 Constriction polynomial coefficients Morphological Excitation cpc1−10

30 Area under curve Morphological Excitation auc
31 Recovery time Morphological Recovery rt

32-35 Damped oscillation Morphological Recovery do1−4
36-37 Pupillary unrest Morphological Recovery pu1−2

38 Baseline average Morphological Recovery bavg
39 Baseline maximum Morphological Recovery bmax
40 Baseline minimum Morphological Recovery bmin
41 Baseline variance Morphological Recovery bvar
42 Baseline median. Morphological Recovery bmed
43 Baseline interquartile range Morphological Recovery biqr
44 Average Statistical - avg
45 Maximum Statistical - max
46 Minimum Statistical - min
47 Variance Statistical - var
48 Median Statistical - med
49 Root mean square Statistical - rms
50 Skewness Statistical - skew
51 Kurtosis Statistical - kurt
52 Roughness Statistical - rough
53 Sharpness Statistical - sharp
54 First quartile Statistical - q1
55 Third quartile Statistical - q3
56 Interquartile range Statistical - iqr
57 Mean absolute deviation Statistical - mad
58 Slope sign change Statistical - ssc
59 Mean crossing Statistical - mx
60 Willison amplitude Statistical - wa

90



Table 3.2: Entropy of various authentication methods.

Work Authentication method Entropy (bits)

Wang et al. [279] Password 20−23
Wang et al. [280] PIN (4-digit[1], 6-digit[2]) 8.41[1], 13.21[2]

Sae-Bae et al. [227] Keystroke 3.48−4.62
Youmaran et al. [301] Iris 278−288
Takahashi et al. [256] Fingerprint 18.6

Adler et al. [12] Face 37.0−55.6
SoundLock (this work) Pupillometry 81

Table 3.3: Participants’ demographics.

Gender # % Age # % Iris color # %

Female 16 37 ≤18 4 9 Brown 34 77
Male 27 61 19-24 24 55 Hazel 6 14
Other 1 2 25-30 12 27 Blue 2 5

31-36 3 7 Green 1 2
≥37 1 2 Other 1 2

Eye wear type # % VR usage # % VR auth experience # %

None 28 64 Frequent 5 11 Proficient 3 7
Glasses 13 29 Occasional 8 18 Limited 5 11

Contact lenses 3 7 Rare 13 30 None 36 82
Never 18 41

Table 3.4: Performance comparison among different classification models.

Classification type Model EER (%) F1-score AUC

One-class
k-NN 1.5 0.983 0.996

OC-SVM 3.4 0.956 0.989

Binary

B-SVM 4.3 0.935 0.986
LR 4.6 0.929 0.990

GNB 7.8 0.909 0.956
RF 3.9 0.944 0.984
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Table 3.5: Performance comparison with state-of-the-art schemes. *Values are obtained
from [99].

Approach FAR (%) FRR (%) F1-score Auth time

PIN* - >1.14 - 2.54-2.95
Drawing pattern* - >5.19 - 2.82-3.87
OcuLock [162] 3.55 3.55 0.983 ≤10

SkullConduct [234] 6.90 6.90 - ≤23
Brain Password [155] 2.50 2.50 0.955 ≈4.80

ElectricAuth [55] 0.83 2.00 - ≈1.30
SoundLock (this work) 0.76 0.91 0.984 ≤7

Table 3.6: Performance under different expo-
sure time to VR environments.

Exposure time FAR (%) FRR (%)

0 (baseline) 0.76 0.91
10 min 0.81 1.11
20 min 0.88 1.54
30 min 0.92 1.65

Table 3.7: Longitudinal study results. *With-
out the adaptation strategy.

Time span FAR (%) FRR (%)

0 (baseline) 0.76 0.91
7 days 1.19 2.14

14 days 2.22 1.48
14 days* 8.89 5.56

Table 3.8: Part-I questions.

Question

Q1 SoundLock is a secure authentication scheme.
Q2 The authentication result is accurate.
Q3 There is no discomfort using SoundLock.
Q4 SoundLock is easy to use.
Q5 SoundLock is easy to learn.
Q6 SoundLock does not introduce much cognitive load.
Q7 The login time is acceptable.
Q8 SoundLock can be used on a daily basis.
Q9 I am willing to use SoundLock on my (future) VR device.
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Table 3.9: Comparison among different user authentication approaches for VR. : method
fulfills criterion. G#: method quasi-fulfills criterion. #: method does not fulfill criterion.
–: not enough information. Att 1-4: replay attack, shoulder-surfing attack, impersonation
attack, guessing attack.

Scheme
Sensor

free
Hand
free

Auth
speed

Accu-
racy

Revoc-
ability

Vs
att 1

Vs
att 2

Vs
att 3

Vs
att 4

PIN  # ⋆⋆⋆ ⋆⋆  # # – #
Drawing pattern  # ⋆⋆⋆ ⋆⋆  # # – #
3D pattern [305]  # ⋆ –  #  – #

CueVR [10]  # ⋆⋆ ⋆  #  – #
LookUnlock [94]   ⋆ –  # G# – #
RoomLock [98]  # ⋆⋆ ⋆⋆  # G# – #
RubikAuth [170]  # ⋆⋆⋆ ⋆⋆⋆  #  – #

SkullConduct [234] #  ⋆ ⋆⋆ # #    
Brain Password [155] #  ⋆⋆⋆ ⋆⋆⋆      

Arias et al. [19] #  ⋆⋆ ⋆      
ElectricAuth [55] # # ⋆⋆⋆ ⋆⋆⋆      
SoundLock [316]   ⋆⋆ ⋆⋆⋆      

GaitLock [237]   ⋆⋆⋆ ⋆⋆⋆ # # G#   
OcuLock [162] #  ⋆ ⋆⋆⋆ #     

Kupin et al. [145] # # ⋆⋆⋆ ⋆⋆ # – –   
Mustafa et al. [185]   – ⋆⋆ # –    
Pfeuffer et al. [204]  G# – ⋆ # # #   
Zhang et al. [311]   ⋆⋆⋆ ⋆⋆ – –    

GlassGesture [297]   – ⋆⋆⋆  –    
RubikBiom [169]  # ⋆⋆⋆ ⋆⋆  –    

BlinKey [314]   ⋆ ⋆⋆⋆  –    
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CHAPTER 4

EYEQOE: A NOVEL QoE ASSESSMENT MODEL FOR 360-DEGREE VIDEOS

USING OCULAR BEHAVIORS

4.1 Introduction

Motivation. With the development of Virtual Reality (VR) technologies, 360-degree

videos, also referred to as omnidirectional or VR videos, have seen a revolutionary rise over

the last decade. As a novel type of multimedia, 360-degree videos provide an immersive

and interactive watching experience by rendering spherical frames covering all directions

around the viewer, attracting great interest from customers, researchers, and industry. In

the meantime, these videos are mostly rendered in high resolutions to maintain fair visual

quality. Given the limited network bandwidth, the network and service providers have to

strike a balance between resource consumption and service quality for 360-degree video

streaming. Hence, it is of essential importance for them to get an in-depth understanding

of the user’s experience and take necessary adaptive actions in service management. As

a critical evaluation indicator, quality of experience (QoE), defined by ITU-T [123] as a

measure of the acceptability of an application or service perceived subjectively by end-

users, has been widely adopted. In current multimedia services, user’s QoE is mainly

obtained by asking people to measure their perceived quality via surveys or self-reports.

However, such procedures are time-consuming and may be annoying for the users.

To address this issue, extensive prior efforts have been devoted to developing QoE

assessment models that map a diverse spectrum of impact factors, such as underlying net-

work conditions and video qualities, to a QoE score given a specific multimedia service

type. In this way, it avoids bothering users with questions to collect opinions and feed-
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back. QoE assessment is automatically carried out with significantly reduced human labor

efforts. Nonetheless, this topic in the context of 360-degree videos in VR environments is

yet far from well investigated. One mainstream of existing approaches can be classified as

video-centric models [52, 67, 88, 239, 251, 252, 290, 303, 306, 313]. QoE is derived by

analyzing distortions of videos displayed under various video quality assessment (VQA)

metrics. These models are criticized for overlooking subjective factors. More recently,

[150, 151, 291] integrate human visual attention to their QoE models. Their basis is that

viewers mostly focus on objects of interest in a scene. Thus, distortions on different parts

should impose a nonuniform impact on QoE estimation. These works then assign weights

in accordance with the viewer’s visual attention in aggregating pixel-wise distortions. The

above ideas are inherited from QoE modeling of conventional 2D videos and thus inca-

pable of capturing unique characteristics of 360-degree videos. As pointed out by prior

studies [104, 134, 266, 317], subject feelings, such as cybersickness, immersiveness, and

fatigue, are of essential importance in determining their perceived QoE of watching 360-

degree videos, in addition to the well-recognized factors such as video quality. Hence, a

QoE model that effectively harnesses all the above factors is in dire need for service man-

agement of 360-degree video streaming.

Recently, ocular behaviors, such as eye gaze, fixations, saccades, pupillometry, and

blinks, have emerged as a new sensing modality to measure human perceptions. For

example, eye blinking rates are reported to increase as the evolvement of visual fatigue

[133, 267]. Strong correlations are also observed between visual fatigue and saccade peak

velocity, saccade duration, and fixation duration [307]. Eye-based sensing has extended

the current multimedia applications and services with an additional perceptive dimension

and opened up grand opportunities to enhance service provisioning. For instance, Tesla is

starting to use the camera above the rear-view mirror in some car models to help make sure

people pay attention to the road while using Autopilot [196]. In the meantime, eye trackers

95



have been embedded into many prevalent commercial VR headsets [2, 93, 264, 270, 274]

to assist in simulating depth of field and focus, providing a more realistic and natural visual

experience. It is widely accepted that incorporating eye-tracking technology is a trend of

VR headsets [60].

Our approach. Based on these observations, we propose to leverage ocular behav-

iors captured by eye trackers in VR headsets to model and predict viewer’s perceived QoE

in watching 360-degree videos. We call the novel prediction model EyeQoE. As presented

in our measurement study (Section 4.4), strong correlations are broadly found between

ocular behaviors and various impact factors of QoE for 360-degree videos, including the

objective ones (e.g., video quality) and subjective ones (e.g., cybersickness, immersiveness,

and fatigue). EyeQoE treats the behaviors as indicators of the viewer’s perceived experi-

ence and aims to bridge these two. It takes the observed behaviors as inputs and produces

a corresponding QoE score. In a holistic view, our model is superior to the state-of-the-art

approaches from two aspects. First, it takes into account human feelings during QoE assess-

ment, which are largely overlooked by prior works. Second, most prior works endeavor to

exhaustively enumerate and include all impact factors in QoE modeling, which are imprac-

tical to implement in real-world scenarios. Alternatively, EyeQoE merely utilizes ocular

behaviors to reflect the viewer’s perceived QoE as a whole. Extensive experiment results

show that it outperforms representative prior works in terms of prediction accuracy.

Despite the attractive sense of exploiting ocular behaviors for 360-degree video QoE

assessment, enabling it involves several non-trivial challenges. First, ocular behaviors are

affected by external visual stimuli [29, 121, 226] and biologically distinct across human

subjects [95, 240]. For instance, a subject’s gazing patterns tend to be more static when

focusing on a tree than tracking a flying bird in a scene [31, 148, 173]. As human eyes have

unique physical characteristics (e.g., sizes, biophysical structures, etc.), ocular behaviors

may vary among individuals even watching the same video. Thus, EyeQoE needs to cope
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with variations introduced by subjects and visual stimuli heterogeneity. Second, because of

the intrinsic diversity of visual stimuli, i.e., video clips, the QoE assessment model, once

trained over existing videos, may be hard to generalize to unseen videos. To deal with this

challenge, a naive approach is to gather as many annotated training samples as possible. It

means to cover videos of all kinds, which would lead to considerable overhead.

The proposed EyeQoE is inspired by some advanced techniques in deep neural net-

works. We first organize observed ocular behaviors into a basic graph, where fixations and

saccades are its nodes and edges, respectively. They are connected in chronological order.

The constructed graph preserves the visual patterns of the raw data in the temporal domain

through modeling the local pairwise relation between adjacent fixations and saccades. We

notice that high correlations also exist among fixations associated with the same object of

interest in the scene, though they may be separated in the timeline. We thus extend the

basic graph by adding additional edges between nodes of high similarity to preserve the

content-dependent features. To facilitate learning over graph-structured data, the core of

EyeQoE adopts a graph convolution network (GCN) based classifier. GCN is a superior

network to produce useful feature representations of nodes and edges from graphs. In this

work, it runs over every fixation and saccade and aggregates their layer-wise representation

with those of its neighbors. The useful features accumulate and propagate throughout the

entire graph as the convolution evolves. The output of the GCN classifier is a QoE score of

the given video clip.

To tackle the challenge of subjects and visual stimuli heterogeneity, we enhance the

GCN classifier by applying a Siamese network framework with devised training sample

selection strategies. The idea of the Siamese network is to employ a pair of substructures

with the same GCN and weights. The selected pair of samples are passed through the two

substructures separately. The distance metric between two outputs is computed and guides

the updates of both substructures. The designed structure, together with the training pro-
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cess, allow the model to tolerate inconsistency in ocular behaviors caused by heterogeneous

subjects and visual stimuli. To accommodate unseen videos, we formulate our problem as

domain adaptation. We first categorize all 360-degree videos into various types according

to their colorfulness, luminance, and motion. Datasets associated with existing and unseen

videos are treated as the source domain and the target domain, respectively. Hence, our

problem involves multiple source domains. We then propose a multi-source adversarial

domain adaptation (MADA) network based on the classic domain adaptation network [96]

that is originally designed for single-source-domain scenarios.

The discussion of this work pertains to PC-tethered VR1 (e.g., HTC VIVE, Oculus

Rift, MS MR) and powerful standalone VR, both with the necessary computing capacity to

carry out online inference and domain adaptation. The QoE model is first trained offline,

say, at servers or cloud, and then transferred to VR devices, while the prediction is carried

out in an online manner.

We highlight our contributions of this paper as follows:

• We introduce EyeQoE, a novel QoE assessment model for 360-degree videos using

ocular behaviors. We then construct the behaviors into a graph that preserves both

features in the temporal domain and content dependency.

• We develop a GCN-based classifier to facilitate learning over graphs. The classifier

is then combined with a Siamese network to deal with subjects and visual stimuli

heterogeneity. MADA is further proposed to easily adapt our model to unseen videos.

• We build our own dataset via a three-month data collection campaign. 50 volunteers

and 5 student workers get involved. To our knowledge, it would be the first data

source of annotated ocular behaviors for 360-degree video QoE assessment.

1Tethered VR means that the headset is physically connected to a computer by cables, such as HDMI

and/or USB.
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• We carry out extensive tests to evaluate EyeQoE based on our dataset. Results indi-

cate that EyeQoE achieves the best prediction accuracy of 92.9%.

The rest of this paper is organized as follows. Section 4.2 reviews prior works related

to our topic. Section 4.3 introduces some necessary background of using ocular behaviors

for QoE assessment. A measurement study that validates the feasibility of our idea is

presented in Section 4.4. The novel graph modeling of ocular behaviors is introduced in

Section 4.5 followed by Section 4.6 that provides design details of EyeQoE. We evaluate

EyeQoE in Section 4.7. A discussion over the limitations of EyeQoE is provided in Section

4.8. We conclude the paper in Section 4.9.

4.2 Related Work

Video-centric Models. Like conventional videos, some existing QoE assessment

models for 360-degree videos directly analyze the displayed videos. QoE is derived by

comparing distortions of the displayed video with its original version. This kind of ap-

proach is called video quality assessment (VQA). For 360-degree videos, new VQA metrics

have been investigated [52, 252, 290, 303, 306, 313]. For example, built upon peak-signal-

to-noise ratio (PSNR), a commonly adopted VQA metric for traditional videos, Yu et al.

[303] modified it into sphere PSNR (S-PSNR) by further considering the impact of the

so-called sphere-to-plane mappings. Basically, pixels would be distorted when projected

from a two-dimensional plane to spherical surface. Sun et al. [252] took into account the

projection distortion in their VQA metric by multiplying a weight to each pixel that re-

flects the relation between the sphere and the plane. In the above works, the calculation

of VQA metrics is in need of the reference 360-degree videos, i.e., the original version

without distortion. Unfortunately, this assumption is impractical in most real-world video

streaming scenarios. To overcome the limitation, QoE assessment models with no refer-
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ence videos have been developed [67, 88, 239, 251]. VQA metrics are directly derived

from the features of impaired videos or network parameters, e.g., bandwidth, packet loss,

and latency. Nonetheless, video-centric models are criticized for overlooking viewer’s per-

ceptive feelings during QoE assessment, such as immersiveness [104, 317] and cybersick-

ness [131, 134]. As validated through many prior works [15, 184, 265], viewer’s subjective

experience of watching videos does not necessarily comply with their displayed qualities

in many cases.

Visual attention enhanced models. Recently, some works start introducing human

factors to QoE assessment of 360-degree videos. In an immersive environment, people

cannot see the whole scene from a single viewpoint. Instead, they usually look around and

focus on what attracts them. Hence, distortions on different parts of the projection sphere

impose a nonuniform impact on QoE. With the basis of the traditional PSNR metric, Xu et

al. [291] assigned weights on the pixel-wise distortion in calculating the PSNR according

to the distribution of the viewer’s visual attention. A similar idea is adopted by VQA-OV

[150]. Visual attention is generated by tracking the viewer’s head and eye movements via

the embedded inertial sensors and eye tracker in a VR headset. In [151], they further con-

structed the subject’s field of view (FoV) and saliency map to guide VQA assessment. The

strategy of using visual attention or saliency map to boost the video-centric QoE models

has also been adopted in the context of conventional videos [84, 147, 157, 291]. As a note,

all the above works are still in need of reference videos to calculate pixel-wise distortions.

Although these works utilize visual information in their models, it is essentially subject’s

visual attention. Instead, our work exploits physiological features in viewer’s ocular be-

haviors to infer her satisfaction in watching 360-degree videos. Therefore, our problem

formulation and the corresponding inference technique are totally different.

Among the prior works, [209] is the closest to ours. It combines facial expression

and gaze direction for traditional video QoE assessment. Our work differs in two main as-
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pects. First, we target 360-degree videos in VR environments while they are for traditional

videos. Second, our work addresses critical challenges in data-driven QoE modeling, such

as subjects and visual stimuli heterogeneity and adaptation to unseen videos. These issues

are overlooked in [209].

Some other works investigate the feasibility of leveraging human behavior related

data, such as heart rate, facial expression, electrodermal activity (EDA), and electroen-

cephalogram (EEG), to evaluate QoE on various VR applications, including assistive tech-

nique systems [229], speech and language assessment applications [132], and general-

purpose applications [47, 81]. None of them is designed for 360-degree videos. Besides, to

our knowledge, no existing commercial VR headset nowadays is equipped with necessary

sensors to acquire these human behavior data.

4.3 Background

Ocular behaviors as indicators of human perceptions. A connection between the

ocular behaviors and human perceptions has been accepted for a decade [91, 192, 307].

Such behaviors include eye gaze, fixations, saccades, pupillometry, and various forms of

eye opening and closure events. In neurophysiological literature, it is demonstrated that

pupils are unconsciously regulated by autonomic nervous system stimulation, which is

known to produce responsive output under numerous emotional states. Hess [112] reported

behavior changes in subjects who view image stimuli that cause different pupil sizes; im-

ages with dilated pupils are deemed more attractive than those with constricted pupils. Eye

blinks and gaze behaviors are treated as crucial indicators for visual fatigue, defined as eye-

strain or asthenopia, which can be caused by both two-dimensional and stereoscopic mov-

ing images [91]. Studies show that eye blinking rates increase due to a prolonged period

of time working in front of video display terminals. The exacerbated drying of the ocular
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Figure 4.1: Relations of gazes, fixations, and saccades when a viewer is watching a 360-
degree video.

surface causes subjects to blink more frequently to lubricate the surface of the cornea and

conjunctiva [133, 267]. Prior works also demonstrate strong correlations in visual fatigue

versus saccade peak velocity, saccade duration, and fixation duration [307]. Specifically,

saccadic oculometrics, saccade peak velocity, and saccade duration significantly decrease

as working time progresses, whereas the duration of medium-length fixations increases

with fatigue development. All these findings motivate us to exploit ocular behaviors to

infer human perceived QoE toward 360-degree videos.

Gazes, fixations, and saccades. Saccades are rapid stepwise movements of both

eyes in the same direction that typically last 10-100 ms, depending on the distance covered

[78]. They are used to shift the gaze to another location. In contrast to saccades, fixations

are relatively focused, low-velocity eye movements with a typical duration of 100-400 ms

and are used to stabilize the retina over a stationary object of interest. A visual gaze is the

instantaneous visual point landing on the stimulus. A fixation consists of multiple time-

series gazes concentrated around the same viewpoint. As shown in Figure 4.1, as a subject

watches a 360-degree video, her fixations move over the projection sphere in accordance

with the object of interest. Each fixation is associated with a series of frames that typically

display a similar scene, in which the location of objects of interest is basically unchanged.
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4.4 Measurement Study

While the correlation between ocular behaviors and human perceptions is well rec-

ognized, whether the former can serve as an indicator for 360-degree video QoE is unclear.

Our measurement study intends to answer this question by carrying out extensive experi-

ments. A total number of 10 subjects are invited to watch 360-degree videos of different

qualities via the HTC Vive headset. Each video is of 25 seconds duration. Subjects’ ocular

behaviors are captured by a Pupil Labs eye tracker that is integrated into the headset. We

then examine how they are influenced by various well- recognized impact factors of 360-

degree video QoE, including video quality, cybersickness, immersiveness, and fatigue.

Observation 1: Ocular behaviors are impacted by video quality. Figure 4.2 exhibits

the impact of video resolutions to ocular behaviors. Figure 4.2(e)-4.2(g) show coordinates

of time-series gazes from one fixation with the image resolution of 4K, 1080p, and 720p,

respectively. In these figures, the origin is the fixation center and the x-/y-coordinate of

each gaze is its horizontal/vertical distance to the center. For fair comparison, we extract

the fixations on the same object across the three videos. We find that gazes are more

focused when the video is in a higher resolution. This phenomenon is further validated

through Figure 4.2(i)-4.2(l) where the probabilistic distribution of gaze distance-to-center

(GDC) is displayed. GDC mainly concentrates on the lower end of the x-axis, mostly

lower than 0.03 for 4K videos. It becomes scattered as the resolution decreases. We have a

similar observation over the gaze velocity in Figure 4.2(m)-4.2(p); eye movements within

a fixation tend to slow down when watching a high-quality video, whereas they become

faster as the quality is degraded.

Apart from the spatial distortion, we also explore the impact of the video’s temporal

distortion with stalling events in the video. Figure 4.3(a) shows the GDC of each observed

gaze as time proceeds. There are three surges in GDC at the 5th, 12th, and 19th second,

which are exactly time instances of the stalling events. It implies that visual attention
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Figure 4.2: (a)-(d): 360-degree videos in resolutions of 4K, 1080p, 720p, and 4K (same
subject in a second trial). (e)-(h): Normalized coordinates of gazes in one fixation. (i)-(l):
Distribution of GDC. (m)-(p): Distribution of gaze velocity.

becomes less focused as stalling occurs. As indicated in Figure 4.3(b), gaze velocity also

experiences significant increases as the video freezes.

Observation 2: Ocular behaviors are impacted by subjective factors. As verified

in prior studies [104, 134, 266, 317], aside from the video quality, 360-degree video QoE

is also influenced by subjective factors, namely cybersickness, fatigue, and immersiveness.

Cybersickness, or motion sickness, refers to the subject’s feeling of sickness, dizziness,

nausea, etc., caused by, for example, the physical device, the VR environment, video con-

tents, and the subject’s physical status. Fatigue describes the subject’s tiresome and is
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Figure 4.3: The impact of video stalling on GCN and gaze velocity.
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Figure 4.4: Impact of cybersickness. (a) The
number of blinks in 25 seconds. (b) The CDF
of ECD.
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Figure 4.5: Impact of fatigue. (a) The CDF of
pupil sizes. (b) The CDF of fixation duration.

mainly impacted by the time duration of watching videos. Immersiveness reflects the sub-

ject’s perception of being physically present in the VR environment. In the measurement

study, subjects are asked to rate their feelings towards cybersickness, fatigue, and immer-

siveness on a 3-point scale indicating low, medium, and high, respectively, after watching

each video.

A correlation is observed between cybersickness and the subject’s blink events. Fig-

ure 4.4(a) shows the number of blinks that a subject performs in watching a 360-degree

video of 25 seconds under three cybersickness levels. Subjects tend to exhibit a higher blink

rate when experiencing cybersickness. It may be due to more intense eye-strain symptoms,

which leads to higher frequent blinks. Meanwhile, the eye closure duration (ECD) in each

blink increases with higher perceived cybersickness, as presented in Figure 4.4(b). Our

measurement study also reveals viewer’s oculomotor and pupillary behaviors as potential
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Figure 4.6: Impact of immersiveness on viewer’s GVD.

indicators of her fatigue. As shown in Figure 4.5, higher perceived fatigue is associated

with shrunk pupil sizes and longer fixation durations. A similar finding in contexts other

than VR is reported in prior studies [180, 307].

Lastly, we present the impact of immersiveness. Figure 4.6 shows the probabilis-

tic distribution of gaze vergence distance (GVD) subject to various immersiveness levels.

Specifically, GVD is defined as the distance between the viewer’s eyes and the focused

object on display. For low immersiveness, the GVD is more concentrated, while it be-

comes scattered under higher perceived immersion. It indicates that a viewer’s visual at-

tention follows objects of interest that may cover a wide range on the sphere under good

immersiveness; it tends to stay in the center of the scene as the perception becomes less

satisfactory.

Observation 3: Eye-based patterns are consistent in multiple trials. In the mea-

surement study, we play the same video of the same quality a couple of times to the same

subjects and analyze changes in their ocular behaviors. Two trials, as indicated in the first

and fourth column of Figure 4.2, are randomly selected. It is observed that ocular patterns,

including but not limited to, the spatial distribution of gazes, GDC, and gaze velocity, are

quite similar to each other. This observation implies that our QoE assessment model, once

well trained on existing ocular behaviors, can be reused over time.
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Summary. Our measurement study lays the necessary foundation for the idea of

leveraging ocular behaviors to infer the subject’s QoE in watching 360-degree videos. The

findings are encouraging. First of all, we verify the hypothesis that there are strong cor-

relations between viewers’ ocular behaviors and their perceived experience in watching

360-degree videos. Second, ocular behaviors can effectively reflect both objective (e.g.,

video quality) and subjective (e.g., cybersickness, immersiveness, and fatigue) impact fac-

tors of perceived QoE in VR. This property can be achieved neither by the existing video-

centric models [52, 88, 252, 290, 303, 306, 313] nor the visual attention enhanced models

[150, 151, 291]. Nonetheless, how to perform an accurate QoE assessment based on col-

lected ocular behaviors is a non-trivial task, which is also the focus of Section 4.5 and 4.6

next.

4.5 Modeling Ocular Behaviors into Graphs

The “node-edge” structure of subject’s ocular behavior data shown in Figure 4.1 mo-

tivates us to transform them into graphs. In the following, we first introduce a basic version

that only captures the temporal structure of ocular behaviors, followed by a comprehensive

version that further explores content dependencies out of the behaviors.

A basic version. Consider a time series of gazes captured by a VR headset. They

form N fixations (NNN) and thus N−1 saccades (EEE). The corresponding basic graph is of N

nodes and N− 1 edges. We denote the graph as G = {NNN,EEE}, where NNN = {n1, ...,nN} and

EEE = {e1, ...,eN−1}. Each saccade ek ∈ EEE links two fixations nk, nk+1 ∈ NNN. Saccades are

directional as they present the chronological order from a fixation to its successor in the

temporal domain. As depicted in Figure 4.1, inside each fixation, there are many gazes.

Typically, these gazes reflect the subject’s visual attention to the same object of interest

in the same scene. Their time-stamped coordinates then serve as part of attributes of the
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(a) Basic graph (b) Comprehensive graph (c) Adjacency matrix

Figure 4.7: (a) An illustration of a basic graph, where circles and arrows denote fixations
and saccades, respectively. (b) An illustration of a comprehensive graph. Dashed lines rep-
resent newly added edges. (c) The adjacency matrix corresponding to the comprehensive
graph.

fixation (i.e., node). Additionally, correlations are observed between the subject’s pupil-

lary and oculomotor behaviors and perceived video quality as elaborated in Section 4.4.

Hence, time-series pupil sizes and time instances of eyelids open/close events (i.e., blink

onsets/offsets) are also treated as part of fixation’s attributes. For a saccade, its attributes are

similar to those of fixations, including coordinates of gazes of that saccade and time-series

pupillary and oculomotor features described above.

A comprehensive version. The basic graph only captures local pairwise relation-

ships between the temporally adjacent fixations and saccades; a fixation (saccade) is con-

nected to two adjacent saccades (fixations). Relationships in other domains remain unex-

plored. In practice, two fixations, even not directly connected by a saccade, may share

high similarities in their attributes. We find in our measurement studies that these simi-

lar fixations are typically associated with the same object in a video. For example, oc-

ular behaviors when a viewer focusing on a tree are distinct from tracking a flying bird

[31, 148, 173]. Thus, we develop a comprehensive graph that preserves both the temporal

and content-dependent information in the collected raw data. The comprehensive version

creates additional edges between fixations of high similarities on the basic graph. As shown

108



in Figure 4.7(b), 3 new edges (indicated by bidirectional dashed lines) are added. Note that

new edges do not have any attribute.

Now the remaining question is how to determine the “similarity” of two given fix-

ations. In this work, we employ the cosine similarity, a common measure of similarity

between two non-zero vectors. Specifically, the similarity score between two fixations ni

and n j is calculated as θ(ni,n j) = (ni · n j)/(||ni|| ||n j||). For expression simplicity, here

we use the node index ni to represent its attribute vector. Given a pre-defined threshold

θ0, an edge is added between ni and n j if θ(ni,n j) > θ0. θ(ni,n j) is then treated as the

weight of the new edge. The comprehensive graph is thus a weighted graph. It is possible

that attributes of fixations and saccades are of unequal size. To facilitate the learning graphs

with unequal attribute size, we employ an encoding process that transforms arbitrary-length

attributes into fixed-length vectors before passing them into the learning model [254].

4.6 EyeQoE

In the following, we first present a basic QoE assessment model that learns from the

graph-structured ocular behaviors. We realize that the intrinsic heterogeneity of human vi-

sual behaviors and the impact of diverse video contents introduce variations to the learning

process. In addition, the assessment model, trained on existing video samples, may not be

readily applicable to new unseen videos. Thus, the basic model is further extended to deal

with these issues.

4.6.1 A Basic GCN-based QoE Assessment Model

We propose to use GCN neural networks to solve our learning-on-graph problem.

GCN is capable of extracting the representation of non-Euclidean graphs using a “con-

volutional” (neighbor-weight-sharing) kernel [310]. Like other neural networks, a GCN

model consists of several layers of neurons; in each layer, higher-level features are ex-
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tracted from the input and passed onto the next layer. A GCN model can be designed to

classify nodes, subgraphs, or even entire graphs. Aside from GCN, graph neural network

(GNN) [71, 153, 230] is another feasible model in handling non-Euclidean characteristics

of the complex structure of graphs. We pick the former over the latter due to its efficiency

in running backpropagation over time.

Construction of adjacency matrix. We formulate our problem as a graph classifi-

cation problem, where the classifier takes the comprehensive graph (generated in Section

4.5) as the input and outputs a QoE score on the scale of 1-5. The input consists of an

attribute matrix and an adjacency matrix. Specifically, an attribute matrix is denoted as

X ∈ R(2N−1)×D, where 2N− 1 comes from N fixations and N− 1 saccades, and D is the

dimension of their attributes after encoding. Each row is the encoded attributes from a fix-

ation/saccade. An adjacency matrix is denoted as A ∈R(2N−1)×(2N−1), where each row and

column corresponds to a fixation or a saccade. The entries of the matrix indicate whether

pairs of elements are adjacent or not in the graph. Take Figure 4.7 as an illustration. Since

n1 is linked to e1, then A1,2 = 1. On the other hand, A2,1 = 0 as e1 is a directional edge.

Assume θ0 = 0.5. For two fixations n2 and n4, their corresponding matrix entries are given

by their similarity score: A3,7 = A7,3 = θ(n2,n4) = 0.67 as θ(n2,n4)> θ0. Denote by vi a

node or an edge, the instantiation rule of the adjacency matrix is summarized as

Ai, j ∈ A =


1 if v j is the successor of vi in the basic graph,

θ(vi,v j) if vi,v j ∈ NNN and θ(vi,v j)> θ0,

0 otherwise.

GCN-based model. Our GCN classifier consists of four convolutional layers followed by a

max pooling layer [138]; each layer in this classifier can be written as a non-linear function

H l+1 = f (H l,A)

110



where H l ∈R(2N−1)×D is the matrix of activations in the lth layer with H0 = X . The model

is specified by the f (·, ·) function of each layer. We adopt the propagation rule introduced

in [138]

f (H l,A) = ρ(ˆ−1ÂH lW l) (4.1)

where Â = A+ I with I being the identity matrix. ˆ is the diagonal node dimension matrix

of Â, and W l ∈R(2N−1)×D is the weight matrix for the l-th layer. ρ is an activation function,

e.g., a ReLU ρ(x) = max(0,x).

The “convolution” operation in Equation (4.1) is designed in a way such that a “one-

hop” filter runs over every fixation and saccade and aggregates its layer-wise representation

with those of its neighbors. Specifically, for each fixation, the filter adds to it the represen-

tations of all other fixations, weighted by their similarity scores, and the representation

of its neighboring saccade. For each saccade, since it only has one predecessor fixation

as its neighbor, it is only updated by taking the representation of that fixation. Then, the

aggregated representation is normalized by dividing with the dimension of the representa-

tions. One can incorporate higher-order neighborhoods information by stacking multiple

GCN layers. Then features are aggregated and propagated iteratively along with the graph.

In the final step, the output from the last layer is passed through a max-pooling layer to

generate the classification result z as the estimated QoE score for the given 360-degree

video.

We adopt the mean squared error as the loss function:

LG =
1
N

N

∑
i=0

(yi− zi)
2 (4.2)

where yi and zi denote the ground-truth label and the model prediction of the ith sample,

respectively, and N stands for the number of training samples.
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Table 4.1: Training sample selection rule. ✓: the pair is selected; ✗: the pair is not.

Same subject Different subjects

Same label
Same video ✗ ✓

Different videos ✓ ✓

Different labels
Same video ✓ ✗

Different videos ✗ ✗

4.6.2 Dealing with Subjects and Visual Stimuli Heterogeneity

In practice, the training dataset, i.e., labeled ocular behaviors, is obtained from a

group of subjects for watching various 360-degree videos. In addition to objective and

subjective impact factors of perceived QoE (as discussed in Section 4.4), the subjects and

visual stimuli heterogeneity also affects ocular behaviors. As a result, it introduces an

additional dimension of uncertainty to the learning process.

Compared with video quality, QoE should be much less relevant to the video content.

It means that two videos are expected to produce similar QoE scores given the same qual-

ity and other subjective impact factors (e.g., cybersickness, fatigue, immersiveness, etc.),

regardless of the contents displayed. In the meantime, video contents highly affect ocu-

lar behaviors, the features considered by EyeQoE for QoE assessment. For example, eyes

move faster when watching high-motion scenes than the stationary ones. As one of our

contributions, this work aims to eliminate the impact of video contents to QoE assessment,

as called visual stimuli heterogeneity. To alleviate impacts from both subjects and visual

stimuli heterogeneity, we modify the basic GCN-based QoE assessment model by apply-

ing the Siamese network [57]. Its idea is to employ a pair of substructures with the same

architecture and weights. It passes a pair of input data through the two substructures sep-

arately, computes the distance metric between the outputs, and updates both substructures

simultaneously.
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Figure 4.8: Top: the architecture of the Siamese network. Bottom: the GCN classifier
model.

The modified model is shown in Figure 4.8. It is composed of two identical GCN

classifiers introduced in Section 4.6.1. XA and XB stand for the pair of training samples for

the two classifiers, respectively. Sample pairs are carefully selected following a scheme

as outlined in Table 4.1. Each pair of samples is classified into one of the four categories

based on their subjects, video contents, and labels. If their labels are the same, we select

the pairs from different subjects and/or video contents. In this way, the model can learn to

tolerate differences in ocular behaviors caused by heterogeneous subjects and video con-

tents, i.e., visual stimuli. In contrast, if their labels are different, we select the pairs from

the same subjects and video contents; the model then learns to distinguish samples of sim-

ilar patterns associated with different labels (i.e., QoE scores). The selected sample pairs

are passed through the two twin models separately. We then calculate the distance between

two outputs. The loss function of the Siamese network is defined as

LS =
N

∑
i=1

(
α
(
ηε

2
c +(1−η)(4− εc)

2)+(1−α)
(
ηε

2
s +(1−η)(4− εs)

2)) (4.3)

where N is the number of sample pairs. εc and εs ∈ [0,4] denote the distances between

model outputs of a sample pair concerning visual stimuli and subjects, respectively. η is

a binary value indicating whether labels of a sample pair are the same (η = 1) or different

(η = 0). α is a factor to balance the weight between εc and εs.
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Combining (4.2) and (4.3), the final loss function is expressed as

L = LG +LS +λ · ||w||22 (4.4)

where λ · ||w||22 serves as a regularization term. In the training process, the final loss L is

fed back into the network to update the weights.

4.6.3 Dealing with Unseen Videos

As discussed, the characteristics of the video scenery being displayed also impact the

viewer’s ocular behaviors. Hence, the QoE assessment model, trained over existing video

clips, may not be readily scalable to an even broader set of unseen videos, especially of

different characteristics. A conventional approach is to gather as many annotated samples

as possible to train the model. In our case, it requires covering videos of all kinds, which

would incur prohibitively expensive overhead in data collection. Alternatively, we propose

to employ domain adaptation [214]. Under this framework, existing videos and new videos

are treated as the source domain and the target domain, respectively. The domain adapta-

tion technique aims to fine-tune parameters of models trained in the source domain to adapt

to new circumstances in the target domain. While this technique has been widely adopted

in the context of computer vision [65], sentiment analysis [203, 257], and action recogni-

tion [56, 182], whether it is effective in 360-degree video QoE assessment is unexplored

yet.

Video type categorization. To facilitate the employment of domain adaptation, we

first categorize all 360-degree videos in various types2 according to their colorfulness, lu-

minance, and motion. Existing methods are available to obtain the above information by
2In this work, we assume that each 360-degree video clip is of one type without significant scene changes.

For longer videos in multiple scenes, they can be divided into multiple segments, each in one scene. We then

apply our model to each segment sequentially. The final QoE can be calculated as the aggregated QoEs of all

segments.
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Figure 4.9: The overall architecture of EyeQoE.

inspecting I-frames and P-frames in videos. As these computations do not involve any so-

phisticated operations, they can be accomplished within dozens of milliseconds in a com-

puter with moderate settings. Assume that the entire video space is divided into κ types. κ

plays an important role in the performance of EyeQoE. We will examine its value selection

in Section 4.7.3.

Domain Adaptation Each video type is treated as a domain. Assume that the train-

ing videos cover K (K < κ) domains DS = {D1
S , ...,D

K
S }. The target domain that an unseen

video falls into is denoted as DT . We propose a multi-source adversarial domain adapta-

tion (MADA) network. It is inspired by the classic domain adaptation network introduced

in [96] but further extended to scenarios of multiple source domains as in this work. As

a note, the classic domain adaptation network is originally designed to deal with single-

source-domain scenarios and thus not readily applicable here.

The architecture of MADA is illustrated in Figure 4.9. To fine-tune the trained GCN

classifier, MADA takes as inputs the samples from a specific target domain DT and a set

of samples from each source domain Dk
S (k ∈ [1,K]). MADA is constructed based on the

GCN classifier with four main modules: feature extractor, label predictor, domain predictor,

and loss scaler. The feature extractor, together with the label predictor, assemble the same
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components of the GCN classifier introduced above. Specifically, the feature extractor is

comprised of the first four convolutional layers of GCN. The label predictor is simply the

output layer, i.e., the max-pooling layer (Figure 4.8). Given any graph presentation X and

A, the above two modules generate a prediction label z. The domain predictor works in

an adversarial way. With the high-dimensional features as the input, it aims to decide if

the given graph presentation belongs to a source domain or a target domain. Ideally, the

domain predictor, once properly trained, cannot distinguish between them. It indicates that

our model’s inference performances over existing videos and unseen videos are almost the

same. The loss scaler computes the loss of label prediction and domain prediction and

aggregates them into the final loss value Ltot

Ltot =
K

∑
k=1

(
γk

nk

nk

∑
i=1

L k,i
y

)
−λ

(
K

∑
k=1

(
γk

nk

nk

∑
i=1

L k,i
d

)
+

1
nK+1

nK+1

∑
i=1

L K+1,i
d

)
.

Here L k,i
y and L k,i

d (k ∈ [1,K]) stand for the label prediction loss and the domain prediction

loss over a sample from source domain Dk
S . L K+1,i

d stands for the domain prediction loss

over a sample from the target domain DT . nk and nK+1 represent the number of samples of

Dk
S and DT , respectively. K is the total number of source domains. λ is a parameter that

controls the balance between label prediction loss and domain prediction loss. γk stands

for the similarity between Dk
S and DT . It is calculated as the cosine similarity between con-

tent metrics of videos from these two domains. The content metrics include colorfulness,

luminance, and motion as mentioned above. Basically, two domains that share a higher

similarity in their videos tend to exhibit similar prediction performance through a trained

model. Hence, the prediction loss of each source domain contributes to the total loss with

a different weight determined by γk: A source domain of a larger γk has a more prominent

impact.

In the MADA network, the GCN classifier is initiated with parameters derived from

the offline training phase, whereas parameters of the domain predictor are set as random
116



values. MADA is triggered with the arrival of an unseen video out of the source domains.

The trained GCN classifier is then fine-tuned through multiple rounds of iterations, where

backpropagation is performed and all weights are updated through the gradient descent

algorithm. We will examine in Section 4.7.3 with details regarding the efficiency of the

fine-tuning process.

4.6.4 Piecing All Together

Figure 4.9 outlines the overall architecture of EyeQoE. The core component is a

GCN classifier designed to infer the QoE score given the subject’s graph-structured ocular

behaviors. To handle the issue of subjects and visual stimuli heterogeneity, we enhance our

GCN classifier with a Siamese network which consists of two identical GCN classifiers.

Sample pairs are carefully selected and used to train the classifier. Almeida-Pineda algo-

rithm [198], a gradient-based optimization method, is adopted. In the testing stage, given

a new sample, EyeQoE first examines if it belongs to any of the source domains. If yes,

it indicates that the corresponding video type has been covered during training. Hence,

the trained GCN classifier is applied directly for QoE inference. Otherwise, the video is

deemed from the target domain. Then our proposed MADA is applied to fine-tune the GCN

classifier with the new sample. Finally, the QoE is derived by feeding the sample into the

updated classifier.

4.7 Evaluation

4.7.1 Settings

Experiment setup. We implement EyeQoE on a PC running Windows 10 operating

system. It is equipped with an Intel Core i7-7820X processor and GeForce RTX 2080

graphic cards. An HTC Vive Pro VR headset is used to provide the VR environment and

render videos to subjects. A Pupil Labs eye tracker is embedded inside the VR headset to
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capture subjects’ eye movements. The VR headset is connected to the PC via a USB cable.

EyeQoE is implemented using the Keras 2.3.0 library built on top of the TensorFlow 2.0

framework. The Adam optimizer [136] is employed for optimizing the training process.

Dataset. All source videos are downloaded from two major platforms of 360-degree

videos, YouTube and Vimeo. The original version is of 4K resolution and 25 fps frame rate.

The videos cover a wide range of genres, such as nature, sports, and city view. To facilitate

the experiment, each video is of a 25-second duration without significant scene changes.

Each source video is subject to two types of distortions, including resolution degradation

and stalling. For the former, we use the JM reference implementation of the H.264 scalable

video codec (SVC) to compress the 4K original videos into lower resolutions such as 2K,

1080p and 720p. For the latter, we add freeze frames to simulate stalling in three different

versions: 8 stalls each lasting 1 second, 4 stalls each lasting 2 seconds, and 2 stalls each

lasting 4 seconds.

We have listed the source videos used for main evaluation in Table 4.2. These videos

cover 5 different semantic types, namely Film & Animation (FA), Entertainment (En),

Travel & Events (TE), Sports (S), and People & Blogs (PB), as indicated by the source

websites. These videos span over 10 different categories, i.e., domains, out of the 27-

domain space. These domains are separated by colorfulness, luminance, and motion based

on the video content.

A data collection campaign is conducted over three months. 50 subjects are recruited.

They are from a university in the United States, most of them are international students

from multiple different countries and nations. Table 4.3 summarizes the demographic in-

formation of the participants. The diversity is observed in the gender, age, eye color, eye

wear, and VR experience. They are asked to wear a VR headset to watch 360-degree videos

of different qualities and give a score from 1 to 5 that best describes their experience af-

ter watching each video. Original, uncompressed reference videos are randomly placed
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Table 4.2: Summary of the video set.

Video Category Color. Lumin. Motion Projection Source

Bar PB ⋆⋆⋆ ⋆ ⋆⋆ ERP Vimeo
Boat FA ⋆⋆⋆ ⋆⋆ ⋆⋆ ERP Vimeo
Bunnies FA ⋆⋆⋆ ⋆⋆ ⋆ EAC YouTube
City TE ⋆⋆⋆ ⋆⋆⋆ ⋆ ERP Vimeo
Dance En ⋆⋆ ⋆⋆⋆ ⋆⋆ EAC YouTube
Girl PB ⋆⋆ ⋆ ⋆⋆⋆ ERP Vimeo
Lions En ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ EAC YouTube
Ski S ⋆ ⋆⋆⋆ ⋆ ERP Vimeo
Snowmobile S ⋆ ⋆⋆⋆ ⋆⋆⋆ ERP Vimeo
Waterfall En ⋆⋆⋆ ⋆ ⋆ ERP Vimeo

Table 4.3: Participant demographic information.

Gender # Age # Eye color # Eye wear type # Experience #

Female 21 18-23 26 Brown 33 None 19 No 34
Male 28 24-29 13 Blue 6 Glasses 22 Yes 16
N/A 1 30-35 9 Hazel 3 Colorless lenses 7

≥36 2 Other 8 Colored lenses 2

amongst the set of videos shown, although the subjects are unaware of their presence. The

score that subjects give these references is representative of the bias that the subject carries.

By subtracting the reference video scores from those for the distorted videos, the biases

are compensated for yielding differential scores for each distorted video. We divide the

data collection into two separate sessions, each lasting no more than one hour, to avoid the

discomforts caused by watching the immersive videos too long. The interval between two

sessions is at least 24 hours. We further implement a UI via Unity, the most widely used

VR development platform, to facilitate the data collection.

We did a literature review over the existing open-sourced datasets. As none of them

meets our need, we decided to collect our own dataset. We have now publicized it on

https://github.com/MobiSec-CSE-UTA/EyeQoE_Dataset.git.
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Figure 4.10: Overall performances of EyeQoE and the comparison with two existing QoE
models. (a) Confusion matrix of EyeQoE’s predictions. (b) ROC curves of different ap-
proaches.

4.7.2 Overall Performance

Figure 4.10(a) exhibits the confusion matrix of EyeQoE’s prediction results. Rows

represent the ground truth from 1 to 5, whereas columns represent the prediction results.

Values on the diagonal are the success rate, i.e., the percentage of predicted results that

EyeQoE gets right. The result is promising as the success rate is above 90% for all QoE

values. Besides, we observe that EyeQoE achieves slightly better performance when pre-

dicting low and high QoE scores (1 and 5). It may be attributed to the fact that users

generally perform well in distinguishing between the best- and worst-quality videos, while

the boundaries for the medium ones tend to be vague in labeling.

Comparison with state-of-the-art. We compare the performance of EyeQoE with

two state-of-the-art solutions for 360-video QoE assessment: S-PSNR [303] and VQA-OV

[150]. S-PSNR is a video-centric model; it is built upon the classic PSNR model but further

takes into account the pixel distortion issue in projection. VQA-OV belongs to the human

factor incorporated model; its main idea is to assign weights on the pixel-wise distortion in

calculating the PSNR, where the weights reflect the subject’s visual attention on the video.
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The ROC curve for each model is depicted in Figure 4.10(b). It is a classic metric

to see how a model balances between true positives and false positives. Ideally, the model

is expected to have a steep ROC curve to deliver an accurate inference. Clearly, EyeQoE

outperforms the other two with the largest AUC (area under the curve) of 0.91. In com-

parison, those for S-PSNR and VQA-OV are merely 0.86 and 0.84, respectively. S-PSNR

and VQA-OV fail to counter critical factors, such as cybersickness, immersiveness, and

fatigue, in QoE assessment. In contrast, rather than exhaustively enumerating and consid-

ering all possible impact factors for QoE assessment, EyeQoE leverages ocular behaviors

as an indicator to reveal the subject’s perceived QoE.

Advantage of GCN-based model in QoE assessment. We further compare the

accuracy performance between the GCN + Siamese network and prior works, S-PSNR

and VQA-OV. Particularly, the GCN + Siamese network is an ablation version of EyeQoE

by removing the domain adaptation component. Since none of the above models include

domain adaptation, the performance should demonstrate the superiority of our GCN-based

design. Figure 4.11 shows the confusion matrices produced by each approach. Apparently,

GCN + Siamese yields the best performance among the three. Its diagonal line has larger

values, meaning more accurate assessments are produced. For all QoE values, GCN +

Siamese maintains a success rate above 91%, whereas the S-PSNR and VQA-OV acquire

much lower success rates, ranging from 80% to 88%.

The reasons that the proposed model outperforms S-PSNR and VQA-OV can be

summarized as follows. First, our method leverages ocular behaviors, which are neglected

by state-of-the-art designs; these behaviors offer valuable information of a user’s QoE as

validated in Section 4.4. Second, by applying GCN on graphs formed by fixations and

saccades, we are able to exploit the temporal dependency and content dependency of the

ocular behaviors by inspecting temporal adjacent and similar activities. The “node-link”

structure of the irregular non-Euclidean graphs implies that only graph learning techniques

121



are suitable to explore these dependencies. Third, the Siamese network used during training

automatically extracts the most relevant features and eliminates subjects and visual stimuli

heterogeneity.
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Figure 4.11: Advantage of GCN-based model - confusion matrices.

Performance over videos of different distortions. We further investigate the effi-

cacy of EyeQoE over 360-degree videos of various distortions in Figure 4.12. Two kinds

of distortions are examined, resolution and stalls. Figure 4.12(a) shows the assessment ac-

curacy by varying the resolution from 720p to 2K. The accuracy of EyeQoE is all above

0.928. Besides, the performance variance under different settings is almost unnoticeable.

This is the same case in Figure 4.12(b)-4.12(d). Hence, EyeQoE delivers consistent perfor-

mance for videos of various distortions. EyeQoE outperforms the other two schemes in all

cases, especially the stalling distortion. Recall that S-PSNR and VQA-OV measure video

QoE through pixel distortions and are thus incapable of reflecting video quality degradation

caused by stalling events.

Impact of subjective factors. Now we evaluate EyeQoE’s performance subject to

cybersickness, fatigue, and immersiveness. Results are illustrated in Figure 4.13. EyeQoE

exhibits high accuracy across various conditions. It implies that ocular behaviors serve

as effective indicators of viewer’s perceived QoE. Besides, EyeQoE outperforms the other
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Figure 4.12: Impact of distortion types on prediction performances. S: S-PSNR; V: VQA-
OV; E: EyeQoE.
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Figure 4.13: Impact of cybersickness, fatigue, and immersiveness on prediction perfor-
mances.

two models, S-PSNR and VQA-OV, by a clear margin. As discussed, neither S-PSNR nor

VQA-OV considers the above subjective factors in QoE modeling. It also explains why

their performances become even worse under a high level of cybersickness, fatigue, and

immersiveness.

Handling longer videos. EyeQoE is designed in the following way to accommodate

longer videos. First, if a video contains multiple scenes, it is divided into several segments,

each having one scene. In this way, we obtain S segments of the target video. Then, the

subject’s ocular behaviors during each segment are structured as one graph and fed into

the trained model. The QoE for that segment is thus derived. To aggregate the QoE’s

from S segments, previous works apply either uniform averaging (e.g., [265]) or weighted
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Table 4.4: Performance on long videos.

Video Duration (min) Scene rate Seg. count Accuracy RMSE

City view 4:00 10.00 8 0.88 0.77
Coaster 5:32 0.72 12 0.93 0.39
Crime scene 22:24 0.76 48 0.90 0.32
Haydee 2:01 2.98 6 0.90 0.79
Viking village 2:09 0.47 4 0.95 0.45

averaging (e.g., [77, 293]). EyeQoE follows the latter one, where the overall QoE of the

video is a weighted average of the QoE for each segment as follows:

Qtotal =
∑

S
i=1 w(i)Qi

∑
S
i=1 w(i)

(4.5)

where Qi is the QoE output for the i-th segment and w(·) stands for the weight determined

by the segment duration and the subject’s memory factor. The rationale behind the second

design is that a subject’s perceived experience over segments rendered later contributes

more to the overall QoE [24, 77]. In this way, the temporal dependencies are preserved

within each segment.

To further evaluate EyeQoE’s performance on longer videos with frequent scene

changes, we use 5 long 360-degree videos from YouTube. Table 4.4 lists the duration

and scene rate (number of scenes per minute) of these videos as well as the correspond-

ing performance of EyeQoE. We observe that the video duration does not affect much on

EyeQoE’s performance. However, as the scene rate increases, the overall performance ex-

periences slight degradation with lower accuracy and higher RMSE. Since a long video is

divided into multiple segments each with one scene, a higher scene rate thus leads to seg-

ments with shorter duration. Hence, the number of features extracted would be reduced,

which in turn affects the performance of EyeQoE.

Performance over different video categories. To determine whether EyeQoE achieves

consistent performance on different video categories, we look into our experimental results
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Table 4.5: EyeQoE’s performance on different video categories.

Domain HHL HML LHL ... LLH MLM HLH

Accuracy 0.94 0.93 0.93 ... 0.92 0.91 0.91
RMSE 0.49 0.50 0.50 ... 0.54 0.57 0.57

and carry out a comprehensive analysis. We list EyeQoE’s performance on 3 best and

3 worst domains in Table 4.5. Specifically, each domain is represented by three letters

indicating the level of colorfulness, luminance, and motion, respectively (L = low, M =

medium, H = high). Overall, the performance remains similar among different categories

(i.e., domains in our work). This indicates that EyeQoE does not show significant bias on

domains. In the meantime, we observe that EyeQoE performs slightly better on videos

with higher luminance and lower motion. This domain largely correlates with nature and

sightseeing videos with more static scenes. On the opposite, videos with lower luminance

and higher motion, such as gaming and action scenes, tend to produce slightly lower QoE

assessment accuracy. One possible reason is that subject’s gazes may tend to become less

focused under frequent scene changes and a dark view. Consequently, it would slightly im-

pact the ocular behavior features. Still, the accuracy is as high as 0.91 which is satisfactory.

Subjective Survey In the survey, subjects are asked to rate EyeQoE from different

perspectives on a 7-point Likert scale (1 = strongly disagree; 7 = strongly agree) as how

much they agree with the following statements: S1. The result is accurate and meets my

perceived QoE score; S2. I feel physically comfortable during the experiment, without

dizziness or sore eyes caused by this model; S3. This model does not interrupt or distract

my experience of the video watching; S4. I would like to have this model to rate QoE

scores for me for practical use. Survey results are shown in Figure 4.14. Most subjects

rated 5 or higher scores for all statements for EyeQoE before and after the experiment.

This suggests that EyeQoE is well perceived by users. Particularly, more than half of the
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Figure 4.14: Survey results (S. = S-PSNR, V. = VQA-OV, E. 1 = EyeQoE before the ex-
periment. E. 2 = EyeQoE after the experiment).

subjects rated the highest score for S2 and S3, indicating that EyeQoE is comfortable to

use and does not interfere with normal sessions. Compared to state-of-the-art approaches,

EyeQoE receives much higher scores for S1 and S4, suggesting that EyeQoE more accu-

rately reflects subjects’ perceived QoE and is preferred for practical use. It is also worth

noting that many subjects rate EyeQoE a higher score after the experiment than before it,

which demonstrates that EyeQoE outperforms user’s expectations.

4.7.3 Micro Benchmarks

Impact of the training ratio. The impact of the training ratio on the performances of

EyeQoE is analyzed. As presented in Table 4.6, the performance is enhanced steadily as the

size of the training dataset increases. It indicates that EyeQoE has robust data scalability.

Meanwhile, the performance improvement becomes marginal as the ratio surpasses 60%.

Impact of training epochs. To determine whether the model has been trained prop-

erly, we monitor the training process in Figure 4.15. Figure 4.15(a) shows the accuracy
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Table 4.6: EyeQoE’s performance regarding the training ratio.

Training ratio (%) 10 20 30 40 50 60 70 80

Accuracy 0.71 0.83 0.85 0.86 0.89 0.93 0.93 0.93
RMSE 1.07 0.90 0.77 0.61 0.60 0.51 0.52 0.50
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Figure 4.15: Training and testing performance over different number of epochs.

with respect to the number of epochs. Note that one epoch is when an entire training dataset

is passed both forward and backward through the model once. The accuracy quickly in-

creases to 0.90 and becomes converged after around 80 epochs. Figure 4.15(b) plots the

loss value, another indicator of whether the model is properly trained. It is considered as

the “price” paid for assessment inaccuracy. As shown, loss tends to be stable after 100

epochs. Combining the results above, it is sufficient to set 100 epochs for training in our

case.

Impact of graph construction metrics. Now we evaluate the performance of Eye-

QoE given different graph construction metrics. To construct a comprehensive graph, simi-

larity is computed between any two fixations to decide if an edge is added. We employ three

different similarity metrics: Manhattan similarity, Euclidean similarity, and cosine similar-

ity. They are classic metrics widely adopted for graph modeling [41]. We also examine the

impact of threshold θ0. Recall that an edge is added if θ > θ0. As shown in Figure 4.16,

cosine similarity leads to the best overall performance among the three similarity metrics.

We also find that EyeQoE achieves its best performance with accuracy = 0.93 and RMSE =
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0.50 at θ0 = 0.6. Basically, a too-large value of θ0 would fail to exploit content-dependency

between fixations, while a too-small value would introduce unnecessary noise to learning.
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Figure 4.16: Impact of similarity metrics and θ0 on prediction performances.

Performance of domain adaptation. Next we evaluate the performance of EyeQoE

on domain adaptation. The fine-tuning process is executed via the proposed MADA with

the arrival of an unseen video. The impact of domain space κ is examined. Recall that

κ represents the total number of domains, i.e., video types under consideration. In the

experiment, three values are adopted κ ∈ {8,27,64}. They are derived by dividing the

space of video content metrics, i.e., colorfulness/luminance/motion, into 2, 3, and 4 levels,

respectively ({8,27,64} = {23,33,43}). In the setting, nT is equal to 0, 5, 10, and 15.

Particularly, nT = 0 means the trained model (over existing samples) is directly applied to

an unseen video, while nT = 5 means 5 samples in the target domain are used to fine-tune

the model. For each nT value, the same number of samples are randomly picked from each

source domain to form the inputs alongside the target domain samples. For comparison,

we also test the prediction accuracy on source domains, denoted as DS in Figure 5.7. This

means that the new video belongs to a source domain, and the trained GCN classifier is

directly applied without using MADA.

As demonstrated in Figure 5.7, the best overall performance is achieved when κ = 27

among the three values. In general, a too coarse categorization, i.e., small κ , would fail to
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Figure 4.19: Computation latency of QoE prediction.

capture the uniqueness of each domain. On the other hand, too fine-grained categorization,

i.e., a large κ , would reduce the number of samples in each domain and thus result in over-

fitting. Both cases affect the test accuracy. We also investigate the impact of nT . A larger

nT is found to produce higher accuracy, since more samples allow the model to fine-tune its

parameters in more rounds to better adapt to the target domain. Meanwhile, it also implies

more videos from the same target domain to collect. Fortunately, the accuracy already

reaches 0.92 with nT = 10. We thus claim that EyeQoE can deliver satisfactory prediction

performance for unforeseen videos within 10 samples of the same type. Figure 4.18 shows

the fine-tuning process with respect to the number of epochs. Both the accuracy and the

loss value become stable after about 20 epochs. It indicates that the domain adaptation can

quickly converge.
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Computation latency. We now examine the computation latency of QoE prediction

over one video. All the operations include the preprocessing of ocular behaviors, graph

generation, and testing (including MADA for domain adaptation). Figure 4.19(a) gives the

stacked computation latency of each operation. Among the three, testing incurs the largest

overhead, about 1.51 s on average. It is due to the fine-tuning for domain adaptation. The

average latency for preprocessing and graph generation is 0.11 s and 0.88 s, respectively.

Figure 4.19(b) further illustrates the CDF of the total computation latency of one QoE pre-

diction. The average value is 2.5 s, with 90% of measurements lower than 4.2 s. It indicates

that a subject’s QoE score can be derived shortly, in a couple of seconds, after a 360-degree

video is finished displaying. This duration is comparable to that from the prevalent QoE

collection solution, in which users are asked to provide QoE scores manually; yet, EyeQoE

is executed automatically without human involvement.

Impact of subject-dependent features on QoE assessment. Different subjects may

be impacted in various ways. To investigate the significance and distinction of impact fac-

tors, we correlate several objective and subjective factors with the QoE scores from the col-

lected data. Specifically, objective factors such as video resolution and stalling events are

directly derived from the preprocessed videos, whereas subjective factors, including cyber-

sickness, fatigue, and immersiveness, are collected during the experiments by confirming

with the subjects about their corresponding subjective feelings. Figure 5.14 demonstrates

the result, from which we make the following observations. First, among all the listed

impact factors, stalling events and cybersickness are the most critical factors, as different

cybersickness levels result in the most distinct QoE distributions, and that low QoE scores

are induced whenever stalling events occur. Second, QoE scores highly concentrate with

different levels of stalling events. For example, 88% of videos with 8 stalls are rated with

QoE as 1; the variance of QoE scores is σ2 = 0.10. Similarly, 64% and 76% of videos with

4 and 2 stalls are rated with QoE as 2 and 3 (σ2 = 0.34 and 0.25), respectively. This means
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that with the same levels of stalling events, more subjects perceive similar QoE, which in-

dicates that this factor brings a common significance across various subjects. In contrast,

immersiveness results in a relatively even distribution of QoE scores, suggesting that this

factor is distinct across different users.
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4.8 Discussion and Future Work

In this section, we discuss several limitations of this work and present our future

research directions.

Extra cost introduced by domain adaptation. Domain adaptation is activated only

for unseen videos; that is, the process will be bypassed when the type of videos that are cov-

ered in the training process. Hence, no extra training cost is incurred. For unseen videos,

domain adaptation does cause certain training cost. To quantify it, we have evaluated the

time consumption for domain adaptation in the experiment. Figure 4.19(a) presents the

stacked computation time of EyeQoE’s all major processes, including preprocessing of oc-

ular behaviors, graph generation, and testing. Specifically, testing is conducted over both

seen and unseen videos. The latter includes the domain adaptation operation. We observe

that the testing time ranges between 0.1 s and 5.1 s, among which larger values tend to

associate with unseen videos due to the domain adaptation.
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In current multimedia services, user’s QoE is mainly obtained by asking people to

rate their perceived quality via surveys or self-reports. However, such procedures are in-

convenient and may even be annoying for the users. EyeQoE intends to automate the entire

process by constructing a QoE assessment model. User’s perceived QoE would be gen-

erated and collected automatically. In this sense, timing is not the main consideration of

our design. Still, according to the above result, QoE assessment for unseen videos (in-

cluding domain adaptation) can be done within 5.1 s, which is satisfactory for real-world

implementation. Of course, it would be even more desirable if the latency can be further

shortened. We plan to investigate this possibility in our future work.

Enhancing the prediction accuracy of EyeQoE. This work demonstrates the fea-

sibility of using ocular behaviors for QoE assessment. While the overall accuracy perfor-

mance is satisfactory, there is still room for improvement. To this end, we plan to pursue

two potential directions. The first one is to combine EyeQoE with traditional objective

quality of service (QoS) metrics such as bandwidth, latency, video quality, etc. Specifically,

we will integrate the QoS metrics as new dimensions alongside the ocular behaviors as the

inputs of our QoE model. The graph modeling will be revised accordingly with the intro-

duction of additional inputs. The selection of QoS metrics will be carefully determined.

They should be practical to collect at VR terminals and play positively in enhancing Eye-

QoE’s accuracy. In the other direction, we intend to combine EyeQoE with other existing

QoE models for 360-degree videos. The hypothesis is that QoE models capturing a greater

diversity of potentially informative features might improve the overall model robustness

when included. We plan to apply ensemble methods [208, 224] over multiple representa-

tive QoE models and EyeQoE to derive the aggregated prediction results. Comparison will

be made with each single model over the prediction accuracy.

Reducing QoE prediction latency for unseen videos. Under the current design,

online QoE predictions over unseen videos are executed at the level of seconds. The la-
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tency is mainly caused by the graph generation and the domain adaptation process, i.e.,

fine-tuning the trained QoE model. While this value is practically acceptable for pure

QoE collection, it would be too large to support real-time QoE-aware service manage-

ment, which can benefit applications such as adaptive 360-degree video streaming [296].

Essentially, service providers can timely adjust streaming strategies, such as resolutions,

rendering speed, and scheduling priority, in accordance with the viewer’s QoE estimated in

real-time. As our future work, we plan to investigate the feasibility of forecasting viewer’s

perceived QoE a short period ahead of time, which then better tolerates the prediction la-

tency. There is an important observation that viewer’s subjective feelings typically do not

change suddenly. For instance, one’s cybersickness and fatigue are gradually accumulated

as prolonged exposure in a VR environment. Such temporal dependencies can be exploited

for QoE forecasting.

Other approaches for adaptation to unseen videos. A critical challenge of this

work is to adapt the QoE model, trained by existing video clips, to unseen videos. Aside

from domain adaptation as adopted here, another interesting future direction is to leverage

few-shot learning [53, 282]. We frame the challenge as a few-shot learning problem, that

is: how to train the GCN classifier such that it can quickly adapt to an unseen video after a

few learning iterations with a small number of annotated samples from the same category

(Section 4.6.3) that the unseen video belongs to. Few-shot learning is promising in classi-

fying new data when only a few training samples with supervised information are available

and has been successfully applied in language processing [298], text classification [304],

and image classification [51].
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4.9 Conclusion

In this paper, we present EyeQoE, a novel QoE prediction model for 360-degree

videos using subjects’ ocular behaviors. To extract useful features from the behaviors, we

propose a novel method that models them into graphs and then build a GCN-based clas-

sifier to learn over graphs. Our design also involves the Siamese network that deals with

learning uncertainty caused by subjects and visual stimuli heterogeneity. A domain adapta-

tion scheme named MADA is further proposed to ensure the efficacy of EyeQoE on unseen

videos. A 3-month data collection campaign is carried out to build our own visual-based

QoE assessment dataset. Our comprehensive evaluation shows that EyeQoE advances the

literature by a suite of new capabilities. First, its best accuracy performance is 92.9%

which beats other state-of-the-art models. Second, EyeQoE is capable of capturing various

impact factors, such as video stalls and viewer’s subjective feelings (e.g., cybersickness,

immersiveness, and fatigue), in QoE prediction, while they are largely overlooked in prior

models. Moreover, all the online operations of EyeQoE can be efficiently performed with

90-percentile computation latency within 4.2 seconds.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their insightful comments and sug-

gestions. We are also grateful to NSF (CNS-1943509) for partially funding this research.

134



CHAPTER 5

Phyre: A NOVEL VIDEO RECOMMENDER SYSTEM FOR VIRTUAL REALITY

USING PHYSIOLOGICAL SIGNALS

5.1 Introduction

5.1.1 Background

In recent years, the integration of virtual reality (VR) technology has revolutionized

individuals’ encounters with digital content, casting a notable impact on video consump-

tion. Watching videos in VR offers an immersive and 3-degrees-of-freedom interactive

experience, allowing users to enter a three-dimensional virtual environment. As advance-

ments in VR technology have made such experiences more accessible, a substantial growth

in video consumption in VR can be expected in the near future.

As one of the core tasks in video services, video recommendation plays an essential

role in providing accurate suggestions for watchers, enabling them to navigate through the

overwhelming content and efficiently discover videos that truly capture their interest. With

the continuously rising popularity of VR videos, the need for effective video recommenda-

tions in this context becomes increasingly crucial. However, to our knowledge, there is no

video recommender system specially tailored for VR users. Currently, video recommenda-

tion schemes in VR are directly borrowed from existing frameworks adopted by traditional

platforms such as YouTube; these frameworks are used for conventional computing termi-

nals such as PCs and smartphones. In comparison, recommending videos in VR presents

the following uniqueness and potential opportunities. First, unlike traditional 2D videos,

VR videos bring to its viewers’ unique perceptive feelings, such as cybersickness, immer-

siveness, and presence [104, 134, 135, 266, 317]. These unique attributes potentially intro-
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duce a new set of factors influencing viewer preferences in VR settings. Second, many VR

headsets nowadays are equipped with a variety of onboard sensors, from IMU to eye track-

ers. They can capture novel types of user-video interactions, providing valuable insights

that can be utilized to enhance video recommendation in VR contexts.

Recently, physiological data has emerged as a new sensing modality to measure user

preference during video watching [58, 59, 72, 110, 129, 149, 178, 242, 300]. For example,

Christoforou et al. [58] employed eye-tracking data to quantify the impact of narrative-

based video stimuli to the preferences of large audiences. Lee et al. [149] studied the link

between users’ head movement data and their preference on VR videos. This evidence

motivates us to leverage users’ physiological responses when engaging with videos to in-

fer their preferences and exploit such information to make future video recommendations.

As an initial effort in this research topic, we start by examining two commonly accessi-

ble physiological measures from VR headsets: eye gaze1 and head rotation. Through an

extensive measurement study, we validate that these two measures can serve as effective in-

dicators of whether a user enjoys watching a video. Encouraged by this promising finding,

we propose incorporating them into VR video recommendation frameworks to enhance

recommendation precision.

5.1.2 Challenges

Despite the appeal of this concept, its implementation poses the following non-trivial

challenges.

C1: Coping with new user-video interaction metrics. First, with new kinds of

user-video interaction metrics, a new data structure and a novel learning model are needed

1This covers a range of mainstream COTS VR models, including VIVE Focus 3 [7], VIVE Pro 2 [3],

Meta Quest Pro [6], PlayStation VR2 [5], Pico Neo series [2], Varjo VR-3 [1], Fove [4], and Vision Pro [8].
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to effectively extract prominent features from the complex raw readings for video recom-

mendation.

C2: Lack of training datasets. Second, to train the recommender model properly,

it is essential to acquire a sizable and diverse labeled physiological dataset. This typically

involves data from thousands of users and videos, encompassing up to a million interac-

tions. As an initial effort to utilize physiological data to refine video recommendations,

we face the challenge of a lack of existing annotated datasets. Consequently, assembling a

comprehensive dataset of a meaningful magnitude and scope presents a significant hurdle.

C3: Energy consumption overhead. Lastly, continuously uploading the new user-

video interaction metrics to a server where the recommendation is performed is energy-

consuming and may quickly deplete the battery of standalone VR headsets. Hence, how to

achieve energy efficiency for VR terminals is another critical aspect to consider in Phyre.

5.1.3 Our Solution: Phyre

In this paper, we propose Phyre, a novel video recommender system for VR enhanced

by physiological signals. It aims to exploit the correlation between physiological measures

and user-video preferences to enhance VR video recommendation. During a video session,

the user’s physiological responses, gaze and head movement particularly, are collected by

the built-in sensors of the VR device; these signals are uploaded to the server to infer the

user’s preference. A recommender system on the server takes physiological signals in all

user-video interactions as the input, extracts their intrinsic and collaborative information,

and makes recommendations accordingly.

To tackle the challenges (C1-C3), we make the following technical contributions.

To address C1, we propose to formulate users, videos, and their interactions as a graph,

where physiological signals are modeled as node and edge embeddings. Graph convolu-

tional network (GCN), a classic graph learning model, is applied over the graph for feature
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extraction. To accommodate the new property of the constructed graph, we renovate the

conventional message passing function in the convolutional layers of the GCN, improving

its capability to learn from physiological signals and extract collaborative information.

To solve C2, we adopt the concept of domain adaptation, which takes the traditional

user-video interaction data as the source domain, the physiological data as the target do-

main, and adapts the model pre-trained on the source domain to the target domain via

fine-tuning. Compared with training from scratch, only a small amount of data from the

target domain is required. Considering the non-negligible gap between the two domains in

our case, we propose a novel cross-modality cross-context domain adaptation (CMCCDA)

scheme to fill the gap by introducing an extra “bridge domain”. The adaptation is then

performed in two incremental steps.

Finally, we address C3 by developing an energy-efficient adaptive encoding scheme.

It adaptively encodes physiological signals in accordance with their entropy to significantly

reduce the data size and thus the energy overhead for data transmission.

We highlight our contributions of the paper as follows:

• We introduce Phyre, a physiological-signal-enhanced video recommender system for

VR. To our knowledge, this is the first video recommender system tailored for VR

utilizing physiological signals.

• We integrate physiological signals into the mainstream recommendation framework

and renovate the GCN learning paradigm to accommodate the new property of the

user-video interaction graph. A novel domain adaptation approach is developed to

address the data scarcity problem. Additionally, an energy-efficient adaptive encod-

ing scheme is proposed to reduce the energy consumption of VR devices.

• We collect a physiological dataset for video recommendation in VR. It involves a

total of 3,000 video sessions within 60 participants and 400 videos. This dataset will

be open-sourced to the research community.
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• We demonstrate through extensive evaluation that Phyre outperforms state-of-the-

art schemes for video recommendation in VR by up to 68.0% in recommendation

precision and up to 28.8% in the ranking quality.

Physiological data and recommender systems. The idea of involving physiologi-

cal data in recommendation systems research has been explored in prior works [43, 70, 75,

165, 236, 292, 312]. Such data include facial expression, gaze, skin resistance, etc. These

works mainly focus on quantifying correlations between physiological measures and users’

preference [43, 70, 75], inferring video genres through facial expression analysis [165], ac-

quiring viewers’ attention time from eye tracking data [292], gaze prediction [312], and

gaze clustering [236] in recommendation systems. However, how to utilize physiological

data to generate recommendation results has rarely been investigated in a systematic way.

This is partially due to a lack of public recommendation datasets available with the physi-

ological data. More importantly, none of the above systems is designed for VR settings. In

this work, we made an initial effort to bridge this gap.

5.2 Related Work

Taxonomy of recommender systems. Over the past few decades, recommender

systems have become a crucial technique in diverse domains, including e-commerce, social

media, and content streaming [64, 201, 219, 232, 299, 309]. These systems are designed to

predict and suggest items potentially liked by target users based on their historical prefer-

ences and behaviors. Based on how information is filtered for recommendations, these sys-

tems can be classified into three categories, namely content-based filtering [32, 179, 202],

collaborative filtering [111, 141, 218, 231], and hybrid filtering [13, 40, 44, 249]. Among

the above categories, collaborative filtering can capture complex and subtle patterns in

user behavior and excels in its large-scale performance without requiring domain knowl-
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edge a priori [122]. As a sub-category of this direction, graph-based collaboration filter-

ing techniques first structure user-item interactions as graphs. Then, graph learning mod-

els are employed to extract collaborative information, which is further utilized to predict

the preference of a target user on various items and make recommendations accordingly

[85, 107, 281, 284, 299]. A representative state-of-the-art is PinSage [299], a recommen-

dation framework for Pinterest utilizing GCN to learn from a user-item interaction graph

for personalized recommendations. Prior works [85, 238, 281, 284] also fall into this cate-

gory. As our work exploits users’ physiological data for video recommendation, we adopt

the graph-based collaborative filtering as our recommendation framework.

Video recommendation. Video recommendation is an important application of rec-

ommender systems. Related techniques have been widely employed by various video

streaming platforms such as YouTube and TikTok [69, 100, 263]. Compared with the

other tasks, video recommendation is unique due to its rich content and temporal dynamics

[100, 107]. Extensive existing efforts have been devoted to tackling these characteristics

[107, 117, 127, 172]. For example, Huang et al. [117] utilized video types and temporal

factors to identify similar videos for recommendation. Jiang et al. [127] created fine-

grained user interest groups based on users’ interaction sequences and made recommenda-

tions based on the preferences of others from the same group. Recently, Han et al. [107]

developed MTHGNN, a micro-video recommender system that considers the temporal and

dynamic changes in users’ preferences. Note that none of the above works utilizes physio-

logical data to understand viewers’ video preferences when making recommendations.

Physiological data and recommender systems. The idea of involving physiologi-

cal data in recommendation systems research has been explored in prior works [43, 70, 75,

165, 236, 292, 312]. Such data include facial expression, gaze, skin resistance, etc. These

works mainly focus on quantifying correlations between physiological measures and users’

preference [43, 70, 75], inferring video genres through facial expression analysis [165], ac-
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Figure 5.1: 2D visualization of normal-
ized feature distributions of gaze and
head movement.
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Figure 5.2: Exemplary features distributions.

quiring viewers’ attention time from eye tracking data [292], gaze prediction [312], and

gaze clustering [236] in recommendation systems. However, how to utilize physiological

data to generate recommendation results has rarely been investigated in a systematic way.

This is partially due to a lack of public recommendation datasets available with the physi-

ological data. More importantly, none of the above systems is designed for VR settings. In

this work, we made an initial effort to bridge this gap.

5.3 Measurement Study

Over decades, extensive research has been devoted to recognizing user’s preferences

on videos from their physiological responses such as gaze [58, 59, 110], head movement

[129, 149], brainwave [59, 72, 178, 300], and heart rate [242].

Measurement setup. To validate that such a correlation also exists under the VR

setting, we carry out an IRB-approved measurement study at a university lab. Ten subjects

are recruited. Each is asked to watch the entire set of twenty videos wearing an HTC

Vive Focus 3 VR device. After watching each video, subjects indicate whether they like or

dislike the video. During the entire process, their physiological signals are recorded by the
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onboard sensors and locally stored on the VR device. The analysis is performed over the

collected dataset from 200 video-watching traces. We focus on two kinds of physiological

data: gaze and head movement, which are captured by the onboard eye tracker and inertial

measurement unit (IMU), respectively.

Results. Figure 5.1 presents the normalized distributions of two-dimensional fea-

tures of gaze and head movement. These two-dimensional features are generated by ap-

plying an autoencoder to the raw readings and then casting the derived multi-dimensional

embedding vectors onto two dimensions for visualization. The features marked with likes

and those with dislikes are distributed in two distinctive clusters. Take gaze as an example:

The mean values of its two-dimensional features are [0.63, 0.57] and [0.35, 0.34] (in [x,

y]) for like and dislike, respectively. Their standard deviations are [0.18, 0.12] and [0.16,

0.22], respectively.

We further extract two calibrated features, namely head yaw speed (HYS) and eye

fixation density (EFD). HYS, drawn from the IMU readings, denotes the average speed

of a subject’s head movement on the yaw axis. As shown in Figure 5.2(a) and 5.2(b),

values of this feature are more evenly distributed when subjects like the video, whereas

those are more concentrated on the lower end otherwise. EFD is the average number of

gazes in a unit area for all fixations. We observe from Figure 5.2(c) and 5.2(d) that EFD

approximately ranges between 12 and 24 gazes per unit area when the user likes the video;

this value is more scattered otherwise.

The results are promising: Gaze and head movement exhibit patterns highly corre-

lated with user interest in video content. They serve as evidence that such physiological

data can be used as effective indicators of users’ preference toward videos in VR, which

will be exploited for video recommendation in the rest of this work.
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Figure 5.3: System architecture of Phyre.

5.4 System Overview

In this work, we propose Phyre, a novel video recommender system for VR by ex-

ploring viewers’ physiological signals. Phyre harnesses the intrinsic correlation between

viewers’ preferences and physiological signals to enhance video recommendation. Fig-

ure 5.3 depicts the overall system architecture, which consists of four major components:

adaptive encoding, graph construction, GCN-based recommendation, and CMCCDA. As a

user watches a video, her physiological signals, i.e., gaze and head movement, are recorded

and encoded by the VR device. The encoded embeddings are uploaded to the cloud server,

where the user-video interactions are constructed into graphs (Section 5.5.1). Then, a GCN

model is employed to learn representations from the graph, based on which the top-K

videos are derived and recommended to the target user (Section 5.5.2). To train the model

with the limited annotated physiological measures, we propose a novel domain adaptation

strategy CMCCDA to deal with the non-negligible inter-domain distances (Section 5.6). An

adaptive encoding algorithm is also developed to compress the raw physiological signals

and reduce energy overhead for data communications at VR terminals (Section 5.7).
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5.5 Graph-based Recommendation

Our task is to recommend a list of videos from a given video pool to a target user. The

list consists of videos the user has not encountered and will likely align with her preference.

Motivated by key observations from the measurement study, we propose to introduce phys-

iological signals (i.e., gaze and head movement) as a new kind of user-video interaction

metric to facilitate VR video recommendations. In the following, we first model user-video

interactions into graphs. Then, we employ GCN as a graph learning tool, upon which a

recommender system is built.

5.5.1 Graph Construction

We construct the entire dataset of all users, videos, and their interactions as a graph

G = {U ,V ,C }, where the set of users are represented as graph nodes U , the set of videos

as nodes V , and their connections as graph edges C . An edge ci j ∈C connects a user node

ui ∈ U and a video node v j ∈ V ; ci j = 1 if ui has watched v j, and ci j = 0 otherwise. We

define the attribute of each edge as the embedding. To derive the embedding, an encoder is

applied to the time-series physiological signals recorded during the video-watching session,

as depicted in Figure 5.4(a); the encoder’s design is detailed in Section 5.7. This embedding

is a vector of features extracted to describe the user preference from the video watching

session. Our definitions of edge attributes are intuitive: Physiological signals can reflect

user-video interactions, as demonstrated in Section 5.3. With edge embeddings, we further

define the node embedding nnni by taking the average of embeddings of all edges connected to

that node: nnni =
1
|Ni|

∑ j eeei j, where Ni represents ui’s neighbor set and eeei j is the embedding

of the edge between ui and its neighbor v j, as illustrated in Figure 5.4(b). The node’s

attribute is defined in such a way because physiological signals contain rich information

regarding both the user and her watched video. Take a user node as an example: The signal
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(a) Edge embedding (b) Node embedding

Figure 5.4: Defining edge and node embed-
dings.

(a) Message passing (b) Aggregation

Figure 5.5: Illustration of graph convolution
operations.

may reveal the user’s video preferences and watching habits, which can be used to profile

the user.

With the constructed user-video interaction graph, we further derive a node attribute

array, an edge attribute array, and an adjacency matrix, which will be used in the graph

learning presented soon. A node attribute array XXX ∈RN×D represents all node embeddings

XXX = {nnni|∀i ∈ [1,N]}. An edge attribute array EEE ∈ RN×N×D represents all edge embed-

dings EEE = {eeei j|∀i, j ∈ [1,N]}. An adjacency matrix AAA ∈ RN×N represents the connectivity

between two arbitrary nodes AAA = {ci j ∈ {0,1}|∀i, j ∈ [1,N]}. In the above definitions, N

denotes the number of nodes in G and D is the cardinality of the embedding vector.

Discussions. Most existing video recommendation frameworks only consider tradi-

tional user-video interactions, such as video-watching duration or if a user likes that video.

Due to their simple data format (i.e., binary or real values), these edge weights are con-

veniently formulated into the adjacency matrix to feed into the graph learning models. In

contrast, (embeddings of) physiological measures here are high-dimension vectors, which

cannot be represented as simple-value edge weights. Therefore, we incorporate them into

the graph as edge embeddings EEE. These edge embeddings provide richer information than

simple-value edge weights and thus offer more valuable insights into users’ preferences.

The main job of the rest of this work is to develop suitable learning techniques to extract

latent features from the new graph with a sophisticated structure.
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5.5.2 GCN-based Video Recommendation

5.5.2.1 Overview

Phyre is built on a classic graph-based recommendation framework, which consists

of two stages: graph learning and top-K recommendation. In the stage of graph learning,

to mine the complex relationships among users and videos from the constructed graph,

we apply a GCN model, which takes as input the graph, i.e., XXX ,AAA,EEE as derived above, and

produces the output as node representations. The representations in different modalities are

then projected into the same space and fused. In the stage of recommendation, a subset of

candidate videos is first sampled from the entire video pool. These are videos that the target

user has not previously watched but may be interested in. Then, a preference predictor

takes the target user’s and each candidate video’s node representations as an input pair and

predicts the preference score. Finally, top-K videos with the highest preference scores are

recommended to the user. Figure 5.6 illustrates this workflow.

To fit into our scenario, we make several renovations to the classic GCN-based rec-

ommendation framework, including modifying the message passing mechanism and some

key calculations (i.e., preference prediction, loss, and aggregation). Next, we will introduce

each step of our GCN-based recommender system in detail.
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5.5.2.2 GCN Learning.

The first step of GCN applies convolution over the graph. It consists of the message

passing and the aggregation steps – in these steps, the embeddings of each node’s neighbors

are propagated through connecting edges and integrated with its own embedding, as illus-

trated in Figure 5.5. As there are two different modalities, i.e., gaze and head movement

data, we start by considering an arbitrary modality m ∈M .

Message passing. As the first step of the convolution operation, message passing

propagates the information from each node to all neighbors through their connecting edges

µµµ
m
j←i =

1√
|Ni|

∣∣N j
∣∣ (WWW m

1 nnnm
i +WWW m

2
(
βeeem

i, j +nnnm
i ⊙nnnm

j
))

(5.1)

where nnnm
i represents node ui’s embeddings of modality m, ⊙ stands for the element-wise

multiplication, WWW m
1 and WWW m

2 are learnable matrices, and β is the weight. Conventional

message passing allows each node to collect information from its immediate neighbors

(i.e., the first term above) [156, 284], thereby integrating local neighborhood information

into its representation.

Discussions. For effective feature extraction, we renovate the message-passing func-

tion to accommodate our unique graph structure, where physiological responses, serving as

edge embeddings, contain information from both end nodes (user and video). To preserve

such information in every convolutional layer, we integrate them into our message passing

function as the second term. In addition, we introduce the third term above to encourage

passing more information between similar neighbors. For example, if user ui has a simi-

lar embedding as video v j, it indicates that the characteristics of video v j align well with

ui’s preferences. This similarity can be leveraged to enhance v j’s feature representation by

integrating more common information shared with ui. Overall, our proposed design sub-

stantially changes the message-passing workflow in traditional GCN, a design unexplored

in prior works.
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Aggregation. Upon receiving all neighbor information, node v j performs the fol-

lowing aggregation function on each layer l to derive the collaborative information

nnn(l)mj = LeakyReLU

(
WWW m

3 nnn(l−1)m
j + ∑

i∈N j

µµµ
(l)m
j←i

)
(5.2)

where nnn(l−1)m
j denotes the target node embedding in the previous convolutional layer, and

LeakyReLU(·) is the activation function. On the lth convolutional layer, node v j is updated

by its information on the (l− 1)th layer and the lth-layer neighbors’ embeddings, which

reflect the collaborative information.

Multi-modality attentional fusion. After several convolutional layers of message

passing and aggregation, the output embeddings of multiple modalities are fused to derive

the final embedding of each node. Considering the heterogeneous embedding space of each

modality, we employ a projection network that maps the embedding of each modality into

the common space, before passing it into the fusion layer, where the projection outputs are

weighted by their modality-specific attention

nnn j = ∑
m∈M

α
mH
(
nnnm

j
)

where α
m =

e−rm

∑i∈M e−ri (5.3)

where nnn j stands for the final node representation after fusion, H(·) represents the projection

network that maps all modalities to the same latent space, αm denotes the attention for

modality m, and rm is the data compression ratio in m.

5.5.2.3 Recommendation.

After GCN learning, the final representations at all nodes possess sufficient informa-

tion for video recommendations. A video sampler first samples a list of candidate videos

from the video pool for the target user [107], from which a preference predictor estimates

their preference scores, and recommends the candidate videos with the highest preference

scores to the user.
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The preference predictor consists of a few fully connected layers; given a target user

u and a candidate video v, it takes the final representations of u and v as an input pair and

produces the predicted preference score

ŷuv = Fθ

(
γnnni⊙nnn j +

1
|Nv| ∑

nnni∈Nv

nnnu⊙nnni +
1
|Nu| ∑

nnn j∈Nu

nnnv⊙nnn j

)
(5.4)

where Fθ (·) is a multilayer perceptron (MLP) parametrized by θ , and γ is a weighting hy-

perparameter. In this way, we comprehensively formulate u’s potential preference towards

v by capturing 1) their direct similarity, 2) the similarity between u and users who have

watched v, and 3) the similarity between v and videos watched by u, before feeding it to

the MLP that maps the input vector to the final preference score.

Discussions. Compared with the preference prediction function in existing works,

we propose to add the correlation between the users’ and the videos’ embeddings as the

first term, leveraging the fact that they both fall into the same feature space. In contrast,

they commonly reside in heterogeneous embedding spaces in previous works. The addi-

tional term directly encourages recommending videos to the target user that share similar

embeddings with each other.

Finally, videos in the candidate list are ranked based on their predicted preference

scores, and the top-K candidate videos are recommended to the target user.

5.5.2.4 Loss Function

The remaining piece is to decide the loss function for model training. To this end, we

establish upon the classic Bayesian Personalized Ranking (BPR) loss [216], a commonly

adopted loss function to train recommender systems, and propose our recommendation loss

as follows

LR =−|yuvp− yuvq| logσ (|ŷuvp− ŷuvq |) (5.5)
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where ŷuvp and ŷuvq are the predicted preference scores between the target user u and a

random pair of two arbitrary videos vp and vq, respectively, with yuvp and yuvq representing

their ground-truth preference scores.

5.6 Cross-Modality Cross-Context Domain Adaptation

To build the GCN-based recommendation model, it is crucial to gather a large la-

beled physiological dataset of the necessary diversity and volume so that the model can be

properly trained. However, this is prohibitively infeasible as it would involve thousands

of users/videos and up to a million interactions. As a reference, MovieLens-1M, a widely

adopted public dataset for training video recommender systems, consists of 1 million inter-

actions from over 6 thousand users and over 3 thousand videos [103].

To address this data scarcity issue, we propose to adopt the concept of domain adap-

tation. It allows a deep learning model trained in one source domain (i.e., traditional user-

video interaction data of 2D videos, denoted by DS) to adapt to a different but related target

domain (i.e., viewers’ physiological data in watching VR videos, denoted by DT ) via fine-

tuning. Typically, domain adaptation needs a much smaller amount of data than training the

whole model in the target domain from scratch. Nonetheless, the successful employment of

domain adaptation requires the distance between the source and target domains to be within

a certain threshold; otherwise, the performance will be degraded significantly. In our case,

such distance is non-negligible as traditional user-video interaction (e.g., whether users fin-

ish watching videos, hit likes, etc.) and physiological data are two distinctive modalities.

Additionally, they are across different contexts as DS is for videos displayed on regular

terminals, such as PCs and smartphones, whereas DT is for VR videos. The discrepancy

between the two domains prohibits the direct adoption of traditional domain adaptation

techniques.
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Bridge domain. To address this challenge, we propose a novel domain adaptation

framework called cross-modality cross-context domain adaptation (CMCCDA). The idea

is to introduce a bridge domain DB, which connects the source and target domains. Rather

than directly adapting the original graph learning model (trained over DS) to the target

domain (using DT ), we propose to fine-tune the model by minimizing the representations’

distance between DS and DB and subsequently their distance between DB and DT . In

doing so, the substantial distance between DS and DT is broken down into two manageable

distances that can be bridged in two incremental steps.

To perform CMCCDA, we create our own hybrid dataset: Each subject watches some

randomly selected videos in VR headsets. During each video session, they freely hit the

like or the share button, pause, fast-forward, rewind, or skip the current video play as they

like. In the meantime, the VR headset records the subject’s physiological data throughout

the session. We call it a hybrid dataset because it involves both the traditional user-video

interactions and the physiological data. The former shares the same modality with DS,

while the latter shares the same context with DT . Even better, these two kinds of data

are aligned in each video. We denote this common information in the hybrid dataset, i.e.,

traditional interactions in the VR context, as DB, to facilitate bridging the two distinctive

domains.

Cross-modality distance. We define the cross-modality distance as the distance

between DB and DT . It is computed as the average distance between the representation

of each node in DB and that of the corresponding node (i.e., same user/video) in DT . We

call it “cross-modality” because nodes in DB and nodes in DT are associated with two

modalities, the traditional interactions and physiological data, respectively. The distance

between two corresponding nodes is denoted as ∆(zzzB
iii ,H

′(zzzT
iii )), where zzzB and zzzT are the

node representations, ∆(·, ·) refers to any appropriate distance function, e.g., Euclidean

distance, and H ′(·) is a projection function to cast representations across modalities.
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Cross-context distance. We define the cross-context distance as the distance be-

tween DS and DB. Like the cross-modality distance, the cross-context distance involves

the distance between representations of nodes from DS and those from DB. Additionally, it

also considers the difference in the graph structures of the two domains.

We first identify common nodes from DS and DB. They are common videos in both

the public dataset and the hybrid dataset. For each common node vi, we identify its local

graph covering its neighbor nodes in h hops and all edges involved, where h is an empirical

value. Then, we calculate the distance between the common nodes’ representations in two

domains and weight it with the similarity between their local graphs ∆
(
zzzS

iii ,zzz
B
iii
)
·ΓS,B

i , where

Γ
S,B
i is the similarity between the local graphs in DS and DB, respectively.

It is challenging to efficiently derive the similarity between local graphs with ex-

isting methods. To address this, we propose to approximate this similarity by compar-

ing their graph representations, which is defined as the weighted average of its node

representations. To further enhance efficiency, given a common node vo, we propose to

approximate the learnable weight for each ui (vi) in its local graph using its centrality

ζi =
dodi

lk
o,i

+η ∑ j∈Ni, j ̸=o
did j

lk
i, j

where d represents the node degree and ι gives the length of

the shortest path between two different nodes; η and k are hyperparameters. This centrality

reflects how much the node contributes to the common node. Based on this, we derive the

graph representations and compute the graph similarity.

Γ
S,B
i =C

 ∑
p∈G S

i,h

ζpxxxp, ∑
q∈G B

i,h

ζqxxxq

 (5.6)

where C(·, ·) is an arbitrary similarity function, e.g., cosine similarity. G S
i,h and G B

i,h

denote the local graphs of common node vi in DS and DB, respectively. xxxp and xxxq are the

node embeddings before GCN.
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Bridging two domains. Finally, we formulate the loss functions based on the cross-

modality distance and the cross-context distance discussed above

LM =
1
|S | ∑

p∈S
∆
(
zzzB

p,H
′ (zzzT

p
))

(5.7)

LC =
1
|O| ∑i∈O

∆

(
zzzS

i ,zzz
B
i

)
·ΓS,B

i (5.8)

In the above equations, S is a set of randomly sampled nodes and O is the set of all

common nodes. We derive two losses, LM and LC, based on the cross-modality and

cross-context distances, respectively. During CMCCDA, these two losses are computed in-

crementally in each iteration and back-propagated to update the model parameters through

optimization. Minimizing the former encourages extracting representations with a smaller

distance between DB and DT , adapting the model from the bridge domain to the target do-

main. Similarly, minimizing the latter rewards learning similar representations between DS

and DB, with an emphasis on common nodes that have more similar local graphs. These

losses jointly guide the model to decrease the distance of representations in all domains

through fine-tuning, adapting it from DS to DT .

Given such, the final loss for fine-tuning is derived as the weighted sum of three

components

L = LR +κLM +λLC (5.9)

where κ and λ are tunable weights. Recall that LR stands for our recommendation loss

proposed in Section 5.5. LM and LC are defined above in Equation 5.7 and 5.8, respec-

tively. The final loss helps to adapt the model from DB to DT and meanwhile enhances the

recommendation accuracy.

We summarize the steps of CMCCDA as follows. First, data from all three domains

are sampled and fed into three identical, weight-sharing GCN models, respectively. Then,

153



the outputs are utilized to compute the cross-modality distance between DB and DT , and

the cross-domain distance between DS and DB. Finally, losses are derived based on these

distances to fine-tune the GCN models.

5.7 Energy-efficient Adaptive Encoding

Recommender systems are typically deployed at cloud servers as their operations

are resource-demanding. We thus adopt a similar strategy here. On the other hand, unlike

traditional user-video interaction metrics (e.g., hitting like and watching duration), whose

data size is very minimal, the size of the time-series multi-modal physiological signals is

enormous for even minutes of video watching. As a result, consistently uploading the raw

readings would consume significant energy overhead. It becomes a critical issue, especially

for the battery-powered standalone VR headsets. Figure 5.8 shows the device’s energy con-

sumption breakdowns of one minute of video watching. Data transmission takes the most

energy consumption at around 52%. Figure 5.9 further shows that the energy consumption

grows linearly with the video length.

Motivated by our observation, we propose to diminish the uploaded data size so as to

reduce the corresponding energy consumption at the VR headsets. Specifically, we develop

an encoding scheme that compresses the raw signals into vector embeddings. They are then

uploaded to the cloud and serve as inputs for our graph learning model. Given a physio-

logical signal, the encoder divides it into segments depending on their entropy and encodes

each segment into an embedding with an adaptive compression ratio; the signal embedding

is the average of all segment embeddings. In this way, physiological segments with higher

entropy are preserved with more information with a lower compression ratio; segments

with lower entropy contain less information and are thus more aggressively compressed.
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data size vs video length.

Algorithm 2 outlines our encoder design. After a video session, the encoder takes

as input the time-series physiological signal φφφ and outputs a vector embedding eee. We first

divide φφφ into multiple segments sss: we apply a sliding window that continuously adds data

points to a segment until its Shannon entropy reaches a threshold value. Then, each segment

is passed into an LSTM model to generate a fixed-length embedding. Finally, all segment

embeddings are averaged as the signal embedding eee. The entropy denotes the amount of

information in one segment. The intuition is that the more informative segments should

be preserved to benefit recommendation in later stages; in contrast, aggressive compression

can be applied to segments with lower information. For example, given a random raw time-

series physiological signal of 1 MB, its corresponding embedding only takes less than 1

KB according to our testing.

5.8 Evaluation

5.8.1 Evaluation Setup

We develop an Android VR app on a Focus 3 VR Headset running an Android-

based OS and collect our hybrid dataset involving 60 participants, 400 videos, and 3000

interactions. Table 5.1 shows the demographic information of these participants. The VR

app is used to play videos, enable controller interaction, and acquire physiological signals

from users through the headset’s embedded eye tracker and IMU sensor at a sampling
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Algorithm 2: Energy-efficient Adaptive Encoding.
Input: Physiological signal φφφ ; embedding length k; minimum segment length t;

entropy threshold εθ ; pre-trained model LST M

Output: Signal embedding eee

1 eee← Zeros(k); c← 0; i← 0; sss← φφφ(0 : t) // Initialize

2 while i < |φφφ | do

3 while ShannonEntropy(sss)< εθ do

4 sss.append(φφφ(i)); i← i+1; // Add next point

5 eee← eee+LST M(sss,k); // Add segment embedding

6 sss← φφφ(i : i+ t); i← i+ t; c← c+1;

7 eee← eee/c; // Average for the signal embedding

Table 5.1: Participants’ demographic information.

Gender # % Age range # % Ethnicity # % Education # %

Female 21 35 ≤17 3 5 Asian 27 45 ≤Bachelor 3 5
Male 38 63 18-25 25 42 Black/Afr. 9 15 Bachelor’s 20 33
Other 1 2 26-35 19 32 Hisp./Lat. 8 13 Master’s 27 45

36-45 11 18 White 15 25 Doctorate 10 17
≥45 2 3 Other 1 2

rate of 120 Hz and 200 Hz, respectively. Videos played in the app are accessed via API

from online resources such as YouTube and TikTok. They cover a wide range of topics and

categories. Our cloud server is in charge of graph construction, model training, and making

recommendations. The server is equipped with eight NVIDIA RTX A6000 GPUs and Intel

Xeon Gold-5218R processors.

Before data collection, each participant is required to fill out the screening question-

naire and read and sign the consent form. Then, the participant is instructed by a researcher

through the calibration phase and basic operations. During data collection, their physiolog-
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Table 5.2: A list of public datasets adopted in Phyre.

Public dataset Number of users Number of videos Number of interactions

MovieLens-100K 1,000 1,700 100,000
MovieLens-1M 6,040 3,884 1,000,209

TikTok-1/50 1,434 29,662 95,426
TikTok-1/5 16,538 366,017 1,047,358

ical signals are captured in real-time. The participant watches 50 videos from a randomly

sampled video set. Participants can freely interact with the video by hitting the like or the

share button, fast-forwarding, rewinding the video play, or skipping the current video as

they like. After a video play, the participant is asked to rate the preference score from 1

(lowest) to 5 (highest) based on how much they enjoy watching this video. After watching

the entire video set, each participant is compensated with $10. All data collection phases

are carried out in a university lab with normal lighting and environmental conditions. The

entire experiment takes around 1 hour for each participant. The study meets all ethical

requirements and holds active IRB approval at the researchers’ university.

After acquiring the hybrid dataset, we randomly divide it into a training set and a

testing set. The training set is used to fine-tune the base model. The evaluation below

is based on the recommendation performance within the testing set. To pre-train the base

model, we employ and study the public datasets as listed in Table 5.2 [102, 103, 262]; these

datasets are commonly adopted in state-of-the-art video recommendation approaches.

To demonstrate the superior performance of Phyre, we adopt the following state-of-

the-art recommendation models as baselines for a comprehensive comparison.

• LightGCN [109], a GCN model with a simplified and concise design of GCN, espe-

cially tailored for recommendation tasks.

• R-GCN [233], a GCN framework focusing on relational modeling and graph con-

struction, which has been effectively used for recommendation.
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Figure 5.11: Ablation study of renovated
GCN in recommendation performance.

• MMGCN [284], a recommendation framework that considers multiple modalities or

types of information when generating embeddings of users and items.

5.8.2 Overall Performance

We showcase the overall performance of Phyre of all metrics and compare the result

of each state-of-the-art baseline model in Figure 5.10. Generally, Phyre achieves higher

recommendation precision and top-K ranking quality, indicated by the normalized dis-

counted cumulative gain (NDCG), compared with all baseline models. Among all baseline

models, MMGCN shows the best performance. For top-1 recommendation (K=1), Phyre

maintains similar precision with MMGCN; as K grows to 10, Phyre outperforms all state-

of-the-arts significantly by 0.11-0.31 (16.3-68.0%) in precision and 0.04-0.17 (5.6-28.8%)

in NDCG. In summary, Phyre achieves superior performance compared with all state-of-

the-art solutions for video recommendation in VR.

We also observe that the number of recommended items K in the top-K recommenda-

tion plays a crucial role in the recommendation performance. To investigate its impact, we

change the value of K within {1, 2, 3, 5, 10} and exhibit the corresponding performanceK.

Within 5 recommended items, increasing K would slightly increase the recommendation

accuracy. This may be caused by the enlarged diversity and item space coverage, which
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may better cater to the user’s varied preferences and needs, reducing uncertainty with more

recommended items. On the other hand, as K continuously increases, the recommenda-

tion precision and NDCG remain stable. This is potentially because recommending more

items may introduce the lower-ranking items in the recommendation list, which may not

be generated as accurately as the top-ranking ones, thus affecting the overall accuracy.

5.8.3 Impact of Base Models and Public Datasets

The model pre-trained on a public dataset plays an important role in Phyre’s perfor-

mance as it determines the initial point of CMCCDA. We compare the recommendation

precision of Phyre within four base models, namely vanilla GCN, LightGCN, R-GCN,

and MMGCN. The graph learning models adopted in these works are all members within

the GCN family and therefore share the common basic kernel structure with the vanilla

GCN. This allows us to implement our interaction-preserving learning technique proposed

in Section 5.5.2 within their message passing functions.

We pre-train these base models on each of the following public datasets. Table 5.3

demonstrates the result of their top-10 performance, i.e., precision@10. We observe that

using MMGCN pre-trained on TikTok-1/50 renders the highest precision score (0.755),

followed by R-GCN on TikTok-1/50 (0.751); the lowest precision (0.344) is obtained by

adopting vanilla GCN on MovieLens-100K. A potential reason for the superior perfor-

mance of MMGCN is the attentiveness to the user-video interaction, which better suits our

scenario. TikTok datasets perform better than MovieLens as their videos have more similar

genres and durations to ours. For optimal performance, we select MMGCN as the base

model and pre-train it on TikTok-1/50 as the basis of Phyre.
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Table 5.3: Precision@10 with respect to different base models and datasets.

Base model MovieLens-100K MovieLens-1M TikTok-1/50 TikTok-1/5

Vanilla GCN 0.344 0.393 0.570 0.620
LightGCN 0.393 0.437 0.627 0.699

R-GCN 0.408 0.455 0.699 0.751
MMGCN 0.436 0.489 0.742 0.755

5.8.4 Ablation Study

Renovated GCN. We investigate the effectiveness of the renovated GCN introduced

in Section 5.5.2, one of the core techniques in Phyre, compared with the original GCN in

the base models. We analyze the performance of Phyre and that of each base model using

its original graph learning strategy. As illustrated in Figure 5.11, compared to each base

model, Phyre significant improves the recommendation precision by 0.10-0.12. Similarly,

a 0.14-0.16 improvement in NDCG from the base models also suggests the effectiveness of

the proposed graph learning in Phyre. The major reason is its improved ability to excavate

and preserve essential information from physiological signals, which suits our case.

CMCCDA. We study the efficacy of CMCCDA proposed in Section 5.6. Three

strategies are compared: a) Phyre with CMCCDA, b) Phyre without CMCCDA, equivalent

to using the pre-trained model without domain adaptation, and c) Phyre with only tradi-

tional interaction data. Figure 5.12 demonstrates the result. With a slight variance across

datasets, we can clearly observe that our strategy, a) Phyre with CMCCDA, achieves the

best result. Surprisingly, b) Phyre without CMCCDA renders even worse performance

than c) Phyre without physiological signals. This may be due to the large domain distance,

making the physiological signal data an overwhelming noise that does not improve but even

deteriorates the pre-trained model’s performance. This proves that CMCCDA is an indis-

pensable technique in Phyre by “teaching” the model the knowledge of the VR context and

physiological signals.
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Figure 5.13: Ablation study of adaptive en-
coding in recommendation performance.

Energy-efficient adaptive encoding. Lastly, we evaluate the energy-efficient adap-

tive encoding proposed in Section 5.7. We compare performance between Phyre with en-

coding vs. that without encoding, i.e., uploading raw signals and extracting embeddings

later on the cloud. Here we focus on its performance drop, an inevitable side-effect of

encoding due to certain data loss. We evaluate this drop from the optimal baseline, i.e.,

upload raw signals without energy limitations. As illustrated in Figure 5.13, Phyre with

adaptive encoding achieves a comparable performance with the optimal baseline with only

a marginal drop in precision (0.04-0.07) and NDCG (0.04-0.05). This result indicates that

our adaptive encoding strategy preserves recommendation performance.

5.8.5 Robustness Against Impact Factors

It is important for Phyre to make recommendation videos with a robust, unbiased

performance across different video categories, for various target user demographics, and at

arbitrary time intervals within a day. To evaluate this, we divide videos into 6 genres (see

Figure 5.14(a)), categorize participants based on gender and age range, and divide physi-

ological signals based on their time collection into {morning, afternoon, evening}. Figure

5.14 demonstrates the results. First, Phyre exhibits similar performance across video gen-

res with minimal stand deviation of 0.014. Notably, film and animation yields the highest
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Figure 5.15: End-to-end latency break-
down.

precision at 0.761, while news sees the lowest at 0.728. Meanwhile, the recommenda-

tion precision of Phyre is consistently over 0.732 for all user demographics. Lastly, Phyre

achieves robust performance at different time intervals within a day, with a marginal stan-

dard deviation of less than 0.01. These results indicate that Phyre can be used for all types

of videos, users, and at any time of a day, without notable performance degradation.

5.8.6 System Overhead

End-to-end latency. The end-to-end latency of Phyre is defined as the time interval

between a user finishes watching a video and when she receives a new recommendation

from the server. It consists of four components: data uploading, graph updating, GCN-

based recommendation, and recommendation result downloading. Note that data acqui-

sition and encoding are not included in the end-to-end recommendation latency, as they

are executed during the video-watching session. As shown in Figure 5.15, the end-to-end

latency for Phyre ranges from 135 ms to 414 ms with an average of 225 ms, which is

practically acceptable for real-world adoption.

Energy consumption. We evaluate the energy consumption (per minute of video

play) of Phyre at VR terminals. The main operations include running the adaptive encod-

ing algorithm and uploading the physiological embeddings. The CDF is plotted in Figure

5.16(a). The energy consumption ranges from 166.6 J to 316.9 J with an average of 237.4
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J. We also test the energy consumption of uploading the raw signals without encoding, as

shown in Figure 5.16(b). The energy consumption ranges from 137.9 J to 500.2 J with an

average of 308.5 J. Therefore, a total of 71.1 J energy consumption is saved by applying

our adaptive encoding scheme than directly uploading raw signals.

5.8.7 Micro Benchmarks

Edge embedding weight β . We study the impact of, β , an essential hyperparameter

of Phyre on its recommendation precision. It controls the weight of the second term in the

message passing function (Equation 5.1) of the convolutional layers. β determines how

much influence the physiological signal casts on the graph learning. As shown in Figure

5.17, the optimal value is found at 1.11. We set β to this value.

Epochs. Lastly, we illustrate the training and testing losses with respect to the num-

ber of epochs in Figure 5.18. To save unnecessary training cost and avoid underfitting and

overfitting, it is important to determine the ideal number of training epochs. As shown,

both losses tend to stabilize after approximately 20 epochs. Therefore, we set it to 20.

5.9 Discussion and Future Work

Other physiological signals. This work aims to investigate the feasibility of incor-

porating physiological signals into VR video recommendation. We focus on gaze and head

movement. Other data such as pupil size and facial expression can be acquired by com-
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mercial VR devices and utilized in Phyre too. For example, the correlation between pupil

size variations and user perception has been established [112, 315]. In our future work, we

plan to extend Phyre by incorporating other modalities to further enhance its performance.

Privacy considerations. Uploading physiological signals to the cloud server may

expose user privacy. Fortunately, in Phyre, only the signal embeddings are uploaded, rather

than raw measures, which mitigates the privacy concern. Yet, prior work has pointed out

that this still poses potential privacy threats [16]; for example, reconstruction attacks can

be applied to reveal the original data. Existing privacy-preserving techniques such as ho-

momorphic encryption, differential privacy, and federated learning can provide potential

solutions to address this. We plan to integrate these approaches into our design in the

future.

Other graph learning models. Phyre applies GCN as the basis for graph learning.

There are several other graph learning models, such as Graph Autoencoder [139], Graph-

SAGE [106], and graph attention networks (GAT) [272], which have also demonstrated

their advanced performance in a range of graph-based tasks. For example, GAT [272] intro-

duces the attention mechanism into the graph neural networks, improving the adaptability

of node importance during message passing. As part of our future work, we plan to modify

Phyre by incorporating other graph learning models and compare their recommendation

performances.

5.10 Conclusion

In this paper, we introduce Phyre, a physiological-signal-enhanced video recom-

mender system for VR. To integrate physiological signals into the recommendation frame-

work, we renovate the GCN learning paradigm to extract essential information from these

signals. To address the data scarcity problem during model training, we propose a novel
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domain adaptation strategy CMCCDA to bridge the discrepancy between the source and

target domains. We further develop an energy-efficient adaptive encoding algorithm to

improve energy efficiency on the VR device. We demonstrate through a comprehensive

evaluation that Phyre outperforms state-of-the-art solutions by up to 68.0% in recommen-

dation precision and up to 28.8% in the ranking quality.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation discusses the potential drawbacks of existing VR techniques, intro-

duces several mechanisms to enhance the security and usability of VR systems and appli-

cations, and points out future research directions.

First, we develop two novel user authentication mechanisms designed for VR users,

namely BlinKey and SoundLock. As a two-factor authentication scheme, Blinkey employs

the user-designed blinking rhythm and unique biometrics exhibited in pupil size variations

to fingerprint legitimate users, offering a secure, convenient, and deployable solution. Ex-

tending this, we propose SoundLock, an effortless, accurate, and revocable state-of-the-art

biometric authentication solution based on a human’s auditory-pupillary response mecha-

nism. To recognize legitimate users, carefully designed features are extracted from pupil

size reactions to auditory stimuli and used to verify the user’s identity. Prototypes are de-

veloped to evaluate the security against multiple types of attacks and the usability in various

real-world scenarios of proposed authentication schemes.

Second, we present EyeQoE, a QoE prediction model for 360-degree videos using

subjects’ ocular behaviors. To extract useful features from the behaviors, we propose a

novel method that models them into graphs and then builds a GCN-based classifier to learn

over graphs. EyeQoE is further equipped with advanced machine learning solutions, in-

cluding a Siamese network to eliminate irrelevant factors through dedicated model training

and a novel domain adaptation framework to enhance real-world performance. We imple-

ment EyeQoE and evaluate its performance via extensive in-field studies, which demon-

strates its superior performance over state-of-the-art solutions.
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Lastly, we introduce Phyre, a video recommender system tailored for VR users,

leveraging viewers’ physiological responses as they engage with VR videos to infer their

preferences and thus make future recommendations. To this end, we integrate these new

physiological user-video interaction measures into the mainstream recommendation frame-

work and renovate the graph learning-based paradigm to accommodate the new changes.

We further develop a novel domain adaptation approach named CMCCDA to address the

data scarcity problem for model training and an energy-efficient adaptive encoding scheme

to reduce energy consumption on the VR device. We collect a physiological dataset and

demonstrate through extensive evaluation that Phyre significantly outperforms state-of-the-

art schemes.

My future research envisions the following topics. First, extending my research re-

garding user authentication on VR, I plan to investigate other security threats in VR and

propose practical countermeasures. To this end, I intend to conduct comprehensive studies

to identify and mitigate these vulnerabilities against adversarial threats such as side-channel

attacks, data leakage, and injection attacks. Second, I am dedicated to improving user ex-

perience in video streaming and other applications in the VR context with human-centered

computing based on our insights of human biometrics and QoE. Lastly, I aim to leverage

the VR technology to study and mitigate potential security threats in the real-world, such

as autonomous vehicles and pedestrian safety issues, to enable and enhance future applica-

tions.

In summary, my research endeavors are dedicated to improving the security of VR

devices against malicious attacks and enhancing the efficiency and usability of novel VR

applications such as QoE assessment and video recommendation, aiming to bring the dis-

tant and “virtual” VR techniques into the tangible “reality” of everyone’s daily lives, and

applying them to address other real-world problems.
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[67] Roberto Irajá Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres Vega,

Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Filip De Turck, and Lu-

174

https://noiseawareness.org/info-center/common-noise-levels/
https://noiseawareness.org/info-center/common-noise-levels/


ciano Paschoal Gaspary. Predicting the performance of virtual reality video stream-

ing in mobile networks. In Proceedings of the 9th ACM Multimedia Systems Con-

ference, pages 270–283, 2018.

[68] Sauvik Das, Gierad Laput, Chris Harrison, and Jason I Hong. Thumprint: Socially-

inclusive local group authentication through shared secret knocks. In Proceedings of

the 2017 chi conference on human factors in computing systems, pages 3764–3774,

2017.

[69] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,

Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The

youtube video recommendation system. In Proceedings of the fourth ACM con-

ference on Recommender systems, pages 293–296, 2010.

[70] Toon De Pessemier, Ine Coppens, and Luc Martens. Evaluating facial recognition

services as interaction technique for recommender systems. Multimedia Tools and

Applications, 79(31):23547–23570, 2020.
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André Carlos Ponce de Leon Ferreira de Carvalho, Christophe Rosenberger, and

Najoua Essoukri Ben Amara. Adaptive biometric systems: Review and perspectives.

ACM Computing Surveys (CSUR), 52(5):1–38, 2019.

[206] Norman Poh, Josef Kittler, Sebastien Marcel, Driss Matrouf, and Jean-Francois

Bonastre. Model and score adaptation for biometric systems: Coping with device

interoperability and changing acquisition conditions. In 2010 20th International

Conference on Pattern Recognition, pages 1229–1232. IEEE, 2010.

[207] Norman Poh, Ajita Rattani, and Fabio Roli. Critical analysis of adaptive biometric

systems. IET biometrics, 1(4):179–187, 2012.

[208] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems

Magazine, 6(3):21–45, 2006.

[209] Simone Porcu, Alessandro Floris, Jan-Niklas Voigt-Antons, Luigi Atzori, and Se-
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